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1 The task

In recent years there have been many applica-
tions of phase change materials (PCM) for latent
heat storage [9]. In support of the experiments
conducted at HUN-REN,1 the need arose for a
PCM container with specific qualities: (i) volume
of around 200–300ml, (ii) high heat conductiv-
ity, (iii) easy construction with injection molding,
(iv) good packing characteristics, and (iv) a some-
what Hungarian symbolism.
In view of (iv)–(v) we chose the shape of an

acorn, as it is assumed to be naturally well-
packable (see Fig. 1), and, while not distinctly Hun-
garian, it is something all Hungarians can relate
to (it is also a suit in Tell-patterned playing cards
widely used in the region).

Figure 1: A pile of acorns.

Heat conduction is enhanced by adding ridges to
the body (Section 3.1), while requirement (iii) is
achieved by splitting the model near the bottom
rim of the ‘cap’ or cupule part (Section 3.2).
The report is structured as follows. In Section 2

1https://www.ttk.hun-ren.hu/

we show our basic model, to which we add enhance-
ments in Section 3. We have considered several al-
ternatives, some of which are shown in Section 4.
Finally, we discuss some characteristics of the pro-
posed shape in Section 5.

2 Initial model

Our initial model was a simple rotational surface.
Its profile curve consists of two parametric curves
(Fig. 2): a quadratic B-spline curve of two segments
(red), with knot vector {0, 0, 0, 0.9, 1, 1, 1}, and a
quintic Bézier curve (blue).

Figure 2: Profile control polygons (in millimeters).
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Rotating this profile around the y axis results in
the basic shape shown in Figure 3. This was origi-
nally modeled inOpenSCAD, an open-source solid
modeling language.2 Here a stem—a 15mm long
cylinder with a radius of 5mm—was also added to
the bottom, and an offsetted model was subtracted
to achieve a wall thickness of 1mm. The hole in
the stem penetrates into the main body, as this will
serve as the opening for injecting the phase change
material into the container.

Figure 3: Base model in OpenSCAD.

3 Enhancements

The above model is aesthetically pleasing, but we
could boost heat conductivity by increasing the sur-
face area. Also, the container, as defined above, can
be fabricated by 3D printing technology (e.g. by
selective laser sintering (SLS), where internal sup-
ports are not needed), but not with injection mold-
ing. We take care of these problems below.

3.1 Adding ridges

A simple way to increase surface area is to add
ridges to the object, such as a sinusoidal wave.
This would also help maintining the flow of the
surrounding liquid. The ridges should be shallower
where the profile is closer to the y axis, and also we
decided that these features should smoothly vanish
near the rim of the cupule. We have modified the

2https://openscad.org/

control points of both curves in Figure 2 by multi-
plying the x coordinates with

1 + 0.08 · sin(15φ) · α(y), (1)

where φ is the rotational angle, α(y) = 1−y/30 for
the cupule, and α(y) = (y−30)/78 for the pericarp.
The result is shown in Figure 4.

Figure 4: Container with ridged surface.

3.2 Splitting

Next we needed to split the model into two halves.
A natural splitting point would be the meeting
point of the cupule and the pericarp, but for the
welding to be more robust, we chose to split 1mm
closer to the stem, thereby leaving a larger contact
area—see Figure 5 for a split view of the model
(inner parts are shown in magenta). Note that we
also incorporated a small ledge near the inner ring
of the cupule to help with the assembly.

Figure 5: Split view of the split container.
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4 Alternatives

The proposed model has many parameters. Some
of the most salient are:

• No ridges on the cupule

• Non-vanishing ridges

• Twisted ridges

• Shorter/longer pericarp length

Examples are shown in Figure 6.

Figure 6: Alternative models.

5 Analysis

In this section we discuss some properties of the
container: its volume and its probable packing ra-
tio.

5.1 Volume

The volume is easily computed by the shoelace for-
mula [1] applied to the inner (offsetted) mesh of
the model (without the stem, so this is a closed
mesh). The result is 273ml, which is inside the
required range (the ‘short’ ang ‘long’ alternatives
shown above exemplify the two extremes of the
valid range, i.e., 200ml and 300ml, respectively).

5.2 Packing

The packing problem, i.e., how many of a given ob-
ject can fit in a container of fixed size, is very hard,
even for simple two-dimensional shapes [7].

An often-used approximation is to use a bound-
ing ellipse. This is easily found by a derivative-free
optimization, such as Powell’s method [5], minimiz-
ing the area while changing the coordinates of the
foci. (The semi-major axis can be computed by
taking half of the maximum of the summed dis-
tances to the foci from all points of the silhouette.)
The best fit is an ellipse of eccentricity 0.772, see
Figure 7.

Figure 7: Best fit ellipse.

In 3D, we can use a spheroid (an ellipsoid where
two of the axes are the same). Its volume can be
computed by the familiar formula

V =
4

3
πab2, (2)

where a is the semi-major, and b is the semi-minor
axis. Using the volume of the outer shell, straight-
forward computation shows that the model fills
71.4% of the spheroid.

Finding an optimal packing of ellipses [8] or el-
lipsoids [4], even in a rectangular box, is still very
hard. It is also not very useful: it would not tell us
the probable packing ratio when our containers are
put into actual use.

We can create a randomized simulation, where
(in 2D) we only need to take care so that the ellipses
do not intersect. This can be checked by looking at
the roots of a cubic characteristic polynomial [2].
Similar results for ellipsoids are also available [10].
Such random packings fill only around 50% of the
box, see Figure 8.

What if we take a regular packing, putting each
spheroid into its axis-aligned bounding box? With
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Figure 8: Randomized packing of ellipses.

a näıve packing, we get

4
3πab

2

8ab2
=

π

6
≈ 52.4%. (3)

However, we can shift the second layer in a way
that the spheroids rest on the ‘shoulders’ of the
ones in the first layer, thus decreasing layer depth,
see Figure 9. With this, we get a packing ratio of
around 65%.

Figure 9: Two layers of spheroids.

As an experiment, we tried packing Big Hit milk
chocolate peanuts in a Fushimi cube [3], folded from
a 15cm origami paper, so its edge size is 150/

√
13 ≈

41.6mm [6], and its volume is around 72ml.
The eccentricity of the peanuts, with 95% con-

fidence interval, is 0.624 ± 0.11, which is slightly
more rounded than our model. The mean semi-
major axes are 9.45mm and 7.34mm, respectively.
During the experiment, we could fit 19 of these into
the box, leading to an occupied volume of approx-
imately 41ml (57% packing ratio).

Figure 10: Origami box filled with chocolate-coated
peanuts.

From the above we can assume that even with a
non-regular packing we can take up at least 40% of
the box volume with our containers.

Conclusion and future work

We have shown the design process of our Acorn
PCM container, and we discussed some of its prop-
erties, as well as a few alternative design decisions.
With this, the work has just started. In the next
time period, we plan to:

1. Fabricate a few test models with SLS printing

2. Conduct experiments and modify the model
accordingly

3. Create a mold for mass production
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3https://www.paraview.org/
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