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Introduction:
The majority of aesthetic objects is represented by free-form shapes, and modeling these naturally involves
multi-sided (i.e., non-four-sided) surfaces, as well. The mathematical representation of such patches is
still an active area in CAGD, and although a great variety of approaches have been published, none of
the genuine n-sided formulations have been standardized so far.

On the other hand, commercial CAD/CAM systems and related application programs only accept
data in standard formats, such as tensor product NURBS surfaces. For this reason, it is a widely applied
practice to convert multi-sided surfaces into a CAD-compatible representation either by (i) approximating
them with larger quadrilaterals, trimming away the exterior part beyond the boundaries, or (ii) splitting
them into smaller four-sided patches.

Both techniques have their deficiencies. They only approximate the original multi-sided surface, and
trimming – in general – cannot ensure even C0 continuity between the adjacent patches. In the splitting
scheme the subdividing curves in the interior weaken the overall continuity of the surface.

Ideally, we would like to have an n-sided patch that:

i) can be used for design (has intuitive controls),

ii) can be attached to adjacent patches with G1 or higher continuity,

iii) and can also be represented accurately as a tensor product NURBS surface.

The above problem can be resolved, if the multi-sided surfaces can be represented as rational poly-
nomials of two parametric variables. Then they can be directly converted into NURBS form, without
either changing the surfaces or harming continuity. The result will be a collection of watertight trimmed
surfaces.

Some of the well-known multi-sided schemes allow computing a trimmed bi-parametric representation.
Our goal in this paper is to review these and discuss the difficulties of the conversion process. We are
going to provide further insights into specific computational and geometric problems, that have not been
discussed elsewhere and are useful for analyzing the “pros and cons” of these representations. We will
investigate four schemes, and show actual high-degree conversion examples with control grids. A general
discussion will conclude the paper.
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S-patch:
The S-patch of Loop & DeRose [4] is a generalization of the Bézier triangle, or, more precisely, a Bézier
simplex mapping from (n−1)D to 3D, where the n coordinates of the domain are supplied by generalized
barycentric coordinates. The depth (d) of an S-patch is the number of deCasteljau steps it takes to
evaluate a surface point, i.e., something similar to the degree of a Bézier triangle (but not the degree of
the S-patch itself). S-patches have many nice properties, and are known to be convertable into tensor
product rational Bézier surfaces of degree d(n− 2).

One drawback of this representation is its large number of control points, which renders it inconvenient
for interactive design. For example, a five-sided patch of depth 5 has 126 control points, while a 4-sided
tensor product patch has only 36. A possible workaround is to use a G1 frame for design that defines
the tangent planes at the boundaries. After increasing the depth by 3, these boundary constraints can
be interpolated [5], and the remaining interior control points can be set by some heuristic to generate a
smooth surface [6], see the figure below.

Fig. 1: Creating an S-patch from a G1 frame.

The CAD-compatible conversion presented in [4] is a two-step process: first convert the surface into
a four-sided S-patch, and then to a tensor product patch. The first step is based on the composition
of Bézier simplexes, which has very high complexity. Even using an efficient algorithm [2], converting a
modest-sized S-patch still requires minutes of computation on today’s machines [7].

Here we propose an alternative conversion process. Since a Bézier simplex is just a polynomial, the
only problem is how to express the generalized barycentric coordinates as a rational polynomial of the
(u, v) parameters on the 2D domain. Using Wachspress coordinates over a regular n-sided polygon, the
barycentric coordinates {λi} are expressed as

λi(u, v) =

n∏
j=1

j /∈{i−1,i}

hj(u, v)

/ n∑
k=1

n∏
j=1

j /∈{k−1,k}

hj(u, v), (2.1)

where the indexing is cyclic, and hj(u, v) is a distance function from the j-th side of the domain polygon.
The implicit equation of the line containing a given side is suitable for this purpose, and is also a linear
polynomial, so the Wachspress coordinates can be expressed as rational polynomials of degree n− 2. We
normalize the distances such that they take on the value 1 at vertices adjacent to the side.

With this method, the Bézier control points of the tensor product representation can be located by
straightforward computation, which takes only milliseconds.

Warren’s patch:
Warren [8] created multi-sided patches from Bézier triangles by assigning 0/0 base points to some of the
control points, essentially cutting off the corners, and thus creating 5- and 6-sided surfaces. A simple
conversion to a (degenerate) tensor product form is also shown in the paper.
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A nice property of this patch is that the “remaining” control points define the behavior of the boundary
in the same way as in a normal Bézier triangle, i.e., the first control row defines its position as a Bézier
curve, the second its first derivatives etc.

Fig. 2: Warren’s 5-sided patch and its conversion to NURBS.

Note, however, that not all degree configurations are available. A 6-sided patch with degree-d bound-
aries can be created from a triangle of degree 3d, but due to its asymmetric construction, a 5-sided patch
cannot have boundaries of the same degree. Moreover, using control points with zero weight is not a
standard practice, and is not supported by many systems. Meshing also presents a problem, as a uniform
grid on the domain would result in distorted triangles (the “trimmed” sides correspond to corners).

Kato’s patch:
Kato [3] proposed a surface defined as the transfinite interpolation of boundary curves with cross-
derivatives. When these boundary constraints are given as a G1 frame (and hence are polynomial),
the whole patch may become polynomial. The tricky part is the parameterization: this representation
uses two local parameters, a side parameter si that takes on values from 0 to 1 as it sweeps from one
adjacent side to the other, and a distance parameter hi that vanishes on the base side i, see Figure 3.

The distance parameters can be computed the same way as in the creation of S-patches, and for side
parameters we can use si = hi−1/(hi−1 + hi+1), which gives a rational polynomial representation.

Kato’s patch is easily extendable to handle G2 continuity, if the side constraints have 3 control rows
(so the cross-degree d⊥ is 2 instead of 1). Then the whole surface becomes a rational tensor product
Bézier patch of degree nd+ (n− 1)(d⊥ + 1) + d⊥.
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Fig. 3: Parameterization.
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Charrot–Gregory patch:
The same idea can be used to convert Charrot–Gregory patches [1] that use only side parameters. (Note
that on a regular domain the si parameters defined above will be the same as the radial parameterization
in the original paper.) The input is given as a G1 frame; the converted patch is of degree nd+ 2(n− 2).

For triangular surfaces, we can use the hi−1 parameter as a side parameter for the i-th side instead
of si, thereby reducing the overall degree to d+ 3.

Fig. 4: A model with four trimmed patches shown with contours, mean curvature and isophote lines.

Discussion:
One aspect of the tensor product conversion we have not touched on before is the quality of the control
net. Aside from Warren’s patch, which has singular control points, all the other representations have
singularities in or outside their domains. When a singular point is close to the domain of the tensor
product patch (i.e., the unit square), the control points in the vicinity show erratic behavior.

Kato’s patch is singular at the corner vertices, and the S-patch is singular on the circle that goes
through the intersections of the lines containing the domain edges, while the Charrot–Gregory patch is
singular on a larger n-sided polygon touching the above circle from the outside. Practically this means
that excluding the triangular S-patch (which is not rational) and the Charrot–Gregory patch for n ≤ 6
(where singularities are relatively far away), all of these converted tensor product surfaces are likely to
have badly oscillating control points (possibly tending to infinity), which may lead to numerical issues.

We present a solution to this problem. Normally the multi-sided domain is inside the unit square
(Figure 3), so that the trimming curves will be inside the surface, but if we lift this constraint, we can
create a larger multi-sided domain, thereby separating the unit square from the singularities. This means
that the actual “trimmed” region will be outside the standard [0, 1]2 domain; this may not be supported
by some applications, but the control structure will be close to the surface.

Fig. 5: An 8-sided Charrot–Gregory patch with default and enlarged domain, and isophote lines.
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n S-patch [4] Warren [8] Kato [3] Charrot–Gregory [1]
3 d[+3] (both Bézier triangles) 3d+ 5 d+ 3
5 3d[+9] ≈ 3d 5d+ 9 5d+ 6
6 4d[+12] 3d 6d+ 11 6d+ 8
7+ (n− 2)(d[+3]) N/A nd+ 2n− 1 nd+ 2n− 4

Tab. 1: Rational polynomial degrees of the converted surfaces for different number of sides, assuming
boundary curves of degree d. Gray cells indicate that the surface is susceptible to the singularity issue.
For S-patches, the number in brackets is applied when the surface is generated by a degree-d G1 frame.

Table 1 summarizes the degrees of all four representations. It can be seen that these patches have
relatively high degrees, in particular when the number of sides and the degree of the boundaries are
raised. While Warren’s patch outperforms the others in this respect, the use of base points somewhat
limits its usability in CAD systems. Kato’s surface always has singularities, and its degree is fairly high,
but it is the only construction where G2 continuity can be easily achieved. We found that while the
Charrot–Gregory patch has a slightly higher degree than the S-patch, it has much lower computational
cost in its multi-sided form, and have no control net quality problems for 5- and 6-sided configurations.

Conclusion:
In the full paper we are going to give representation details, and further analyze the difficulties of the
conversion process. The computational efficiency of the proposed procedures and the avoidance of wiggling
control structures will be the focal part of our discussion, together with several comparative examples.
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