A circular parameterization for multi-sided patches

Péter Salvi

Budapest University of Technology and Economics

10th Hungarian Conference on Computer Graphics and Geometry

Budapest, June 9, 2022

Outline

Motivation Preliminaries Related work Circular domain Inverse problem Examples Algorithm Application Overlap-GB patch Conclusions

Why genuine multi-sided patches?

Parameterization

Domain evolution

Parallel tangents - periodic boundaries?

- Handled as multiple ribbons (CD)
- Handled as a single ribbon (GBS)
- Harmonic parameterization \Rightarrow discrete solution
- High computation cost, not suitable for some patch types

Parallel tangents - periodic boundaries?

Handled as multiple ribbons (CD) Handled as a single ribbon (GBS) Harmonic parameterization \Rightarrow discrete s High computation cost survable for some

Preliminaries

Properties I – Height parameter basics [linear map]

- 1. h = 0 on the base side.
- 2. *h* is continuous and varies monotonically.
- 3. *h* changes uniformly from 0 to 1 on the sides adjacent to the base side.

Properties II – Limited [interconnected map]

4. $h \leq 1$ everywhere inside the domain.

Properties III – Full [Wachspress map]

5. h = 1 on all distant sides. [full mapping]

Properties IV – Constrained [interconnected map]

6. $h'_{i-1} = -h'_{i+1}$ on the *i*th side. [constrained mapping]

All properties?

- Constrained Wachspress coordinates
- 1D multi-sided patch
- Singular blending function

All properties?

Circular domain

Inverse map

▶ Unit circle with equal arcs ▶ Base: $\left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$ ▶ $\varphi = \frac{(2h+1)\pi}{n}$ ▶ $\theta = h\pi \implies \theta : 0 \to \pi$ ▶ $\psi = \theta - \varphi$ ▶ $\mathbf{0} = \left(\frac{\sin\theta}{\sin\psi}, 0\right)$ ▶ $r = \left|\frac{\sin\varphi}{\sin\psi}\right|$

Constrained property & corner parameterization

Algorithm

• Line at
$$\hat{h} = \frac{1}{n-2} \Rightarrow \hat{u} = \cos \frac{\pi}{n-2}$$

• Same circle for $h = 0$ and $h = 1$
• Idea: bisection search

 $\begin{array}{l|l} \text{if } u > \hat{u} \text{ then} \\ | & \text{return bisection}(\Delta, 0, \hat{h} - \varepsilon) \\ \text{if } u < \hat{u} \text{ then} \\ | & \text{return bisection}(\Delta, \hat{h} + \varepsilon, 1) \\ \text{return } \hat{h} \end{array}$

 $\Delta(h) = \|\mathbf{p} - \mathbf{O}(h)\| - r(h)$

Algorithm

if

if

▶ Line at
$$\hat{h} = \frac{1}{n-2} \Rightarrow \hat{u} = \cos \frac{\pi}{n-2}$$

▶ Same circle for $h = 0$ and $h = 1$
▶ Idea: bisection search
if $u > \hat{u}$ then
| return bisection($\Delta, 0, \hat{h} - \varepsilon$)
if $u < \hat{u}$ then
| return bisection($\Delta, \hat{h} + \varepsilon, 1$)
return \hat{h}

 $\Delta(h) = \|\mathbf{p} - \mathbf{O}(h)\| - r(h)$

Application

Overlap–GB patch

Corner-based variation of the GB patch

Needs a full, constrained parameterization

$$S = \sum_{i=1}^{n} \sum_{j=0}^{\lfloor d/2 \rfloor} \sum_{k=0}^{\lfloor d/2 \rfloor} \mathbf{P}_{ijk} B_j^d(h_{i+1}) B_k^d(h_i) + \mathbf{P}_0 B_0,$$

Conclusions

- Circle as multi-sided domain
- Height parameterization
 - Circular arcs
 - Full
 - Constrained
 - Efficient
- Overlap–GB patch
- Suitable for periodic boundaries
- ► *G*² cap for subdivision surfaces?

Conclusions

- Circle as multi-sided domain
- Height parameterization
 - Circular arcs
 - Full
 - Constrained
 - Efficient
- Overlap–GB patch
- Suitable for periodic boundaries
- ► *G*² cap for subdivision surfaces?

Any questions?

