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A B S T R A C T

A new multi-sided, control point based surface representation is introduced, based on
the Generalized Bézier patch [1]. While the original surface is based on convex polygo-
nal domains and a specific, uniform arrangement of control points, the new construction
permits domains with concave angles and supports a more general control point struc-
ture, where independent “half-Bézier” interpolants, or ribbons, are blended together.
The ribbons may have arbitrary degrees along the boundary and also in the cross-
derivative direction; the related control points ensure tangent- or curvature-continuous
connection to adjacent quadrilateral Bézier patches and permit shape editing and opti-
mization, when needed.

The surface comprises four components: (i) a concave domain generated from a 3D
loop of boundary edges, (ii) half-Bézier interpolants, (iii) parameterizations that cover
the full domain for each interpolant, and (iv) blending functions that guarantee both
Bézier-like behavior along the boundaries and a smooth, C∞-continuous composition
in the interior of the patch. Editing concave Bézier patches using additional control
points is also discussed. A few interesting test examples illustrate the benefits of the
method.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Multi-sided surfaces are often needed in geometric design,
where a complex patchwork may contain non-four-sided sur-
face elements, as well. These must smoothly connect to adja-
cent quadrilaterals or other multi-sided patches, satisfying posi-
tional and cross-derivative constraints along their given bound-
aries, and must ensure a natural blend in the interior. The con-
straints may be given in the form of vector functions (transfinite
interpolation) or in control point based form, suitable to match
adjacent patches also specified by control grids. Typical ap-
plications include curve network based design, hole filling and
vertex blending.

The representation of multi-sided free-form surfaces over a
concave domain is still a “terra incognita”. Operations to de-
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fine concave surfaces are rarely available in practice – usually
trimmed tensor-product surfaces are used instead, but it is hard
to directly define and modify trimming curves. Alternatively,
additional subdivision curves may be inserted to split concave
areas into smaller, convex ones, but this may lead to underde-
termined entities, an extra burden for designers.

Our goal is to create concave multi-sided surfaces that pos-
sess features similar to those of ordinary patches. We wish to
edit general topology curve networks having non-convex re-
gions, as well, while avoiding weakly defined, artificial 3D
curves that are only needed to make patch generation possi-
ble. Simple examples are shown in Figure 1. The difficulty is
due to the fact that the usual techniques of convex multi-sided
surfacing cannot be directly applied. Related problems include
alternative ways of (i) defining the domain, (ii) the interpolants,
(iii) the parameterization, and (iv) the blending functions.

In a recent publication a new representation, called Gener-
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Figure 1: Simple concave patch configurations.

alized Bézier (GB) patches, was introduced [1]. This com-
bines n side interpolants specified by rectangular grids of con-
trol points, and eventually a uniform control structure similar to
a spider web is produced. GB patches satisfy our basic require-
ments for smooth connections and a smooth natural interior.
The scheme offers additional internal control points for shape
editing or optimization.

The current concave surfacing project heavily builds on this
concept by having recognized that the GB patch is a specific
variant of a more general surface representation, which permits
the combination of “half-Bézier” interpolants, or ribbons, with
arbitrary degrees. The essence of the concept is that the control
points of adjacent ribbons do not necessarily need to be identi-
cal and in this way further design freedom can be obtained. In
particular, concave corners can be represented by disjoint sets
of control points, as it will be explained later.

The paper is structured in the following way. First we discuss
related previous work, then in Section 3 we summarize the basic
construction of GB patches and the concept of combining half-
Bézier ribbons. The details of the actual construction will be
discussed in Section 4, together with options to edit the interior
of the surface. Test examples in Section 5 and suggestions for
future work conclude the paper.

2. Previous work

There is an extensive literature on multi-sided patches; here
we are going to concentrate on representations that can handle
concave configurations. These can be categorized in the follow-
ing way:

Multivariate Bernstein–Bézier patches. S-patches [2] repre-
sent a perfect generalization of Bézier triangles for an arbitrary
number of sides. It has been pointed out recently, that these sur-
faces work over concave domains, as well, assuming we have
a suitable parameterization with non-negative barycentric coor-
dinates [3, 4]. S-patches – and their higher-dimensional gener-
alizations – can be used in various applications, such as shape
deformation; however, in an interactive design context, difficul-
ties arise due to their extremely complex control point structure,
even in the case of low-degree boundaries. See for example test
object #1 in Section 5. Ensuring smooth connections between
adjacent S-patches is also hard, although a method to set G1

continuity has been proposed recently [5].
Transfinite interpolation methods. The pioneering work of

Kato [6, 7] may be the one closest to our goals, and it also
supports internal holes. It uses singular blending functions, and

singular side interpolants at the concave corners. A comparison
with our method is shown in test object #2 of Section 5. Sone
et al. [8] concatenate adjacent sides with concave angles into a
single edge; then the best correspondence is chosen by a metric
based on the isolines of the resulting surface. An interesting
idea with many open questions. Note that loops with more than
two concave parts are not supported.

Discrete methods. The curvature-aligning technique of Pan
et al. [9] and the method of Stanko et al. [10] based on bihar-
monic normal propagation and mean curvature fairing both fill
arbitrary curve networks with a mesh. These create aesthetic,
smooth surfaces, but lack the advantages of control point based
schemes.

Splitting methods. A practical solution is to split concave
loops into multi-sided convex patches by means of additional
subdividing curves in 3D. Then the adjacent sub-surfaces need
to be smoothly connected, possibly with curvature continuity,
as discussed e.g. in [11]. A further restriction may be to per-
mit only quadrilaterals, when industry-standard tensor-product
patches are stitched together. While this problem was thor-
oughly investigated earlier [12], there is still interesting re-
search related to composite multi-sided surfaces [13, 14]. There
are special cases where the subdividing curves can be auto-
generated (e.g. central splitting for convex patches), but in gen-
eral the construction is shape-dependent, and updating these
curves can be an extra burden on the users. Another drawback
of the splitting approach is decreased continuity.

Other methods. Trimming is the prevalent solution to this
problem in today’s CAD systems, but it is approximative, and
inherently asymmetric. Subdivision of concave faces may cre-
ate unwanted protrusions, so in practice these are split into con-
vex regions.

Our work is an extension of the Generalized Bézier patch [1].
In addition to the original paper, we have used some ideas from
a follow-up article [15], as well.

3. The Generalized Bézier patch

In this section we summarize the formulation of the GB
patch, as described in [1], then reinterpret it in a way that fa-
cilitates the extension to concave domains.

3.1. Basic concept
The GB patch is defined by a multi-sided control grid; it is a

generalization of quadrilateral Bézier patches both in terms of
control structure and behavior along the boundaries. A degree
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Figure 2: Control structure of the GB patch. Black frames are shown around
the associated layers of two sides.

d patch interpolates n boundary curves given in Bézier form;
for each side there exists a half-Bézier ribbon of (d + 1)× dd/2e
control points. (We will also use the notation l = dd/2e for the
number of layers or control rows.) For example, Figure 2 shows
the control points of a six-sided quintic patch with three layers.
It can be seen, that the control point structure associated with
a given side is identical to that of a quadrilateral Bézier patch
(see black frame).

For a G1-compatible patch, the cross-derivatives along the
boundaries are determined by the first two rows of control
points. Coloring shows a classification: at the corners there
are four corner control points (red), that are associated with
two sides. Between these, there may be ribbon control points
(green), associated exclusively with one side. There are inte-
rior control points (yellow) in the middle, that can be placed
automatically by a special degree elevation algorithm. Finally,
there is a single central control point (blue), that is responsible
for the middle of the patch.

The surface is defined over a regular polygonal domain in the
(u, v) plane. Each side of the domain has its own local param-
eterization (si, hi), with mappings computed from the Wachs-
press barycentric coordinates {λ1, ..., λn} (see e.g. [16]):

si = λi/ (λi−1 + λi) , hi = 1 − λi−1 − λi. (1)

The side parameter si varies linearly on side i between 0 and 1,
while the distance parameter hi vanishes on side i and increases
monotonically within the domain, eventually reaching 1 as it
gets to the “distant” sides (i.e., edges not adjacent to side i).

The GB patch is a composition of Bézier ribbons, given in
the following form:

Ri(si, hi) =

d∑
j=0

l−1∑
k=0

Ci
j,k · µ

i
j,kBi

j,k(si, hi). (2)

The indexing scheme is side-based, i.e., Ci
j,k refers to the j-th

control point in the k-th row of the i-th side. For an ordinary
Bézier ribbon the control points Ci

j,k would be multiplied by bi-
variate Bernstein functions Bi

j,k(si, hi) = Bd
j (si) · Bd

k (hi). For the
GB patch, however, they need to be multiplied by additional

rational weight functions µi
j,k, as well. As it is explained in Sec-

tion 4.2, µi
j,k depends on a pair of distance parameters: hi and

hi−1 or hi+1. This term guarantees that Ri reproduces the ordi-
nary Bézier ribbons on the i-th side of the domain, and vanishes
on all other sides in both positional and differential sense, thus
satisfying the interpolation property.

The patch equation is simply given as

S GB(u, v) =

n∑
i=1

Ri(si, hi) + C0 · B0(u, v), (3)

where C0 is the central control point, and B0 the weight defi-
ciency, defined as

B0(u, v) = 1 −
n∑

i=1

d∑
j=0

l−1∑
k=0

µi
j,kBi

j,k(si, hi), (4)

ensuring that the sum of basis functions equals to 1, and thus
the convex combination property is also satisfied.

As shown earlier, many of the control points occur twice in
consecutive Bézier ribbons. Generally speaking, Ci

j,k = Ci−1
d−k, j

for j < d
2 and Ci

j,k = Ci+1
k,d− j for j > d

2 . In our quintic patch
this gives (e.g.) Ci

5,0 = Ci+1
0,0 , Ci

5,1 = Ci+1
1,0 , Ci

4,0 = Ci+1
0,1 and

Ci
4,1 = Ci+1

1,1 .
In the original paper [1] it is explained how a degree d GB

patch can be composed from 2-layer (G1) or 3-layer (G2) in-
terpolants of various degrees. The algorithm performs a de-
gree reduction/elevation operation to match the highest degree
d = max(d1, . . . , dn), and increases the number of layers accord-
ingly to l = dd/2e. Several new interior control points are com-
puted in the process and incorporated into the final structure.
Thus a GB patch not only interpolates positional and cross-
derivative constraints from the Bézier interpolants, but also of-
fers additional degrees of freedom for shape design and opti-
mization. It smoothly connects to adjacent quadrilateral and
multi-sided Bézier surfaces, i.e., if the corresponding Bézier
ribbons satisfy G1 or G2 continuity, the full GB patch will en-
sure this in the same way.

3.2. GB patches reinterpreted

The original GB patch is based on two assumptions:

1. The half-Bézier ribbons have a uniform structure, hav-
ing the same degree d, and the same number of layers
l = dd/2e.

2. The corresponding control points of adjacent ribbons are
identical at the common corners.

We have found that these restrictions can be lifted, and the GB
patch can be defined in a more general way, permitting (i) ar-
bitrary degrees di and layers li, and (ii) independent grids of
control points. The control points may coincide fully or par-
tially with those of the neighboring ribbons, or not at all. In any
case, the weighting functions µi

j,k guarantee that the half-Bézier
ribbon behaves like an ordinary Bézier patch on its base edge,
and vanishes on all other sides of the domain.

We show a few simple examples, and indicate how many con-
trol points with different positions remain, see Figure 3. (a) The
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(a) di = di+1 = 3, li = li+1 = 2 (b) same as in (a) (c) di = di+1 = 5, li = li+1 = 3 (d) di = 4, di+1 = 5, li = 2, li+1 = 3 (e) same as in (a)

Figure 3: Control point coincidences at a corner.

control points fully coincide (4 + 4 → 4). (b) There are two
different twist control points (4 + 4 → 5), i.e., the mixed par-
tial derivatives of the adjacent ribbons are not compatible. Our
scheme will produce rationally weighted twist vectors, in the
same way as it was suggested by Gregory [17]. (c) Partial coin-
cidence of 5 control points (9+9→ 13). (d) Degrees and layers
differ, and only the corner control point is shared (9 + 4→ 12).
(e) Same degrees and layers as in (a), but all the control points
except the corner are fully separated (4 + 4 → 7). This last
structure facilitates the definition of patches with concave cor-
ners, see the next section.

4. Concave GB patch

As we start dealing with concave patches, various difficulties
arise, since the methods of convex patches cannot be applied
any longer. Conventional side interpolants typically sweep from
the tangent vector of the previous boundary curve to the tangent
of the next curve, but in the concave case these create unwanted
twists: the interpolants must point towards the interior of the
patch at all times, see Figure 4. This means that at a concave
corner the interpolant must preferably match an inverted tan-
gent vector. A 3D example is given in Figure 5, showing that
the patch would turn inside out if we used the convex approach.

There are also other issues, as almost all components of the
original formulation – blending functions, domain, parameteri-
zation – need revision. In the following we will examine these
one by one. Since the control structure is no longer uniform, we
need alternative means for interior control. Increasing the num-
ber of layers is fairly straightforward, but we will also explore
some other possibilities at the end of the section.

4.1. Ribbons
A half-Bézier ribbon in the concave GB patch has (di + 1)× li

control points, where di and li are independent values. This
means that the degrees of this interpolant are di in the edgewise
direction, and 2li − 1 in the cross-boundary direction. Adding
a new layer to a ribbon consequently adds two to its cross-
boundary degree, so all control points need to be repositioned.
The new positions Ĉi

j,k can be computed by applying the stan-
dard Bézier degree elevation algorithm twice, except for the
newly inserted control row, which appears at a linear extension
of the ribbon’s last segment. Assuming that we are changing li
to li + 1, these are defined as

Ĉi
j,li = Ci

j,li−1
+

(
Ci

j,li−1
−Ci

j,li−2

) 1
2li + 1

. (5)

Figure 4: Default (top) and enhanced ribbons (bottom) at a concave corner.

Figure 5: Patch with default (top) and enhanced ribbons (bottom).
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(a) µ1
0,0B3

0(s1)B3
0(h1)

(b) µ1
1,0B3

1(s1)B3
0(h1)

(c) µ1
1,1B3

1(s1)B3
1(h1)

(d) µ1
0,1B3

0(s1)B3
1(h1)

Figure 6: Blending functions near the concave corner of an L-shaped domain.

Similarly to the convex GB patches, this sort of degree eleva-
tion retains the boundaries and the cross derivatives, but it may
slightly change the interior of the original surface.

4.2. Blending functions
The bivariate Bernstein polynomial associated with a control

point Ci
j,k is

Bi
j,k(si, hi) = Bdi

j (si)B
2li−1
k (hi), (6)

which is then multiplied by the scalar function µi
j,k, as it was

mentioned earlier in Section 3. We define it as follows:

µi
j,k =


αi = h2

i−1/
(
h2

i−1 + h2
i

)
, when 2 j < d,

1, when 2 j = d,
βi = h2

i+1/
(
h2

i+1 + h2
i

)
, when 2 j > d.

(7)

(a) Example where projection works

(b) Example where projection fails

Figure 7: Domains generated by projection.

This is somewhat simpler than the one in [15], and more suit-
able for handling non-coinciding control points. A ribbon is
given as

Ri(si, hi) =

di∑
j=0

li−1∑
k=0

Ci
j,k · µ

i
j,kBi

j,k(si, hi). (8)

Concave GB patches do not have such a central control point
that would remove the weight deficiency (see also Section 4.5),
so we propose to normalize the weights with the sum

Bsum(u, v) =

n∑
i=1

di∑
j=0

li−1∑
k=0

µi
j,kBi

j,k(si, hi) (9)

in order to maintain convex combination. Figure 6 shows some
cubic blending functions over an L-shaped domain.

Finally, we arrive at the patch equation

S (u, v) =
1

Bsum(u, v)
·

n∑
i=1

Ri(si, hi). (10)

4.3. Domain generation
A simple and natural method for generating a concave do-

main is to project and connect all vertices on a best fit plane [7],
see Figure 7a. While this works for configurations that are rel-
atively flat, there are many models with highly curved bound-
aries where this method cannot be applied, see Figure 7b. In
the following we present an algorithm that is an extension of a
heuristic procedure used for generating convex domains [18].

Let pi denote the vertices of the domain (i = 1 . . . n), ei the
length of the edge pi−1 pi, and φi the angle at pi. Similarly,
in 3D, let Ci(u) denote the Bézier curve defined by the con-
trol points Ci

j,0, Ei the arc length of Ci, and Φi the angle be-
tween the tangents −C′i (1) and Ci+1(0), see Figure 8. We wish
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Figure 8: Notations in the domain and in 3D.

p8=(0,0)
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p2

p3

p4

p5

p6

p7

v

Figure 9: Domain generation.

to generate a domain such that the sizes of the edge lengths
and angles are distorted minimally, i.e.,

∑
i

(
ei − clengthEi

)2
and∑

i

(
φi − cangleΦi

)2
are minimal, where clength and cangle are con-

stants.
The algorithm works as follows. We set ei = Ei, and normal-

ize the angles such that they sum to (n − 2)π:

φi = Φi ·
(n − 2)π∑

j Φ j
. (11)

Then we can draw a domain by starting from the origin, drawing
the edge e1 in the direction of the x axis, then turning left at a
π− φ1 angle, drawing e2 etc. At the end we will not necessarily
get back to the origin, resulting in an open polygon { p̂i}. The
deviation is v = (0, 0) − p̂n, which is then distributed between
all points:

pi = p̂i + v ·

∑i
j=1 e j∑n
j=1 e j

. (12)

Figure 9 shows the stages of the algorithm, and Figure 10 shows
the domain for the same input curves as in Figure 7b.

This algorithm is also applicable in the concave case, but
it does not guarantee that the resulting domain is free of self-
intersections, and sometimes can produce polygons with very
narrow “bottlenecks”, see the leftmost image in Figure 11. We
validate the domain by requiring that the minimum distance be-
tween any two segments ei and e j should be larger than a pa-
rameter δmin. (This is set to 10% of the domain’s bounding box

Figure 10: A good domain for the curve loop in Figure 7b.

Figure 11: Two steps of widening the domain.

axis in all our examples.) If a domain is invalid, we enlarge
the φ0

i = φi angles and regenerate the polygon, iterating until
it becomes valid. The enlargement is done by scaling the con-
vex angles by a constant factor σangle (1.1 in our examples), and
distributing the surplus evenly amongst the concave angles:

φk+1
i =

σangle · φ
k
i , when φi ≤ π,

φk
i − φ

k
extra/nconcave, when φi > π,

(13)

where nconcave is the number of concave angles, and

φk
extra = (σangle − 1) ·

∑
φk

j≤π

φk
j. (14)

An example is shown in Figure 11.
It is theoretically possible that the above algorithm fails,

when some of the self-intersections cannot be eliminated. In
that case, no patch is created and subdivision needs to be per-
formed. However, our experiments show that the proposed
method is fairly reliable, as we have not come across failing
examples.

4.4. Parameterization

The parameterization presented in Section 3 was based on
Wachspress coordinates, which cannot be used within a concave
polygon. Mean value coordinates [16] are the most common al-
ternative for the concave case, but these are nonnegative only
in the kernel of the domain. We have chosen to use harmonic
coordinates [19] instead, which are much more computation-
intensive, but they are nonnegative inside the whole poly-
gon. The local coordinates si and hi are computed from these
barycentric coordinates as before – examples are shown in Fig-
ure 12.
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Figure 12: Local parameterization in a concave domain. The base sides are
shown in red.

Figure 13: Concave corner control point construction.

4.5. Additional control

The concave patch as defined above may become flat in sur-
face areas relatively distant from the boundaries. This effect
gets stronger when n is large, and it may harm shape quality
in the vicinity of concave corners. We can add extra control
points and associated basis functions to change the fullness of
the surface – two such constructions are presented below.

Concave corner control points
We would like to affect the shape around the concave cor-

ners, so it is a natural choice to formulate a blending function
as the extension of the second control rows of the adjacent sides
(colored black in Figure 13). Multiplying the cross-directional
parts of the blending functions yields

βiB3
1(hi) · αi+1B3

1(hi+1). (15)

This is a suitable term, as it vanishes on all sides of the domain.
It takes a maximum value of 4

81 at hi = hi+1 = 1
3 . (For simplic-

ity’s sake here we discuss concave corner control points only for

Figure 14: Blending function of a concave corner control point.

Figure 15: Blending function of the central control point.

cubic blends.) The above expression can be scaled arbitrarily;
we propose to match the weight of the adjacent control points
Ci

d,1 and Ci+1
0,1 at their maximal position, which is approximately

2
9 , thus leading to a multiplier of 9

2 . This seems to be a reason-
able choice in our test examples. See Figure 14 for the blending
function, and also the related test object #6 in Section 5.

Central control point
We can define a central blending function using the distance

parameters as∏
i

h2
i . (16)

This expression also admits arbitrary scaling. We can compute
a suitable multiplier by using the maximum value

(
n−2

n

)2n
we

would obtain in a regular polygonal domain, where all λi = 1
n

at the center. Similarly to the concave corner control points, we
can then set the multiplier as 2

9 ·
(

n−2
n

)−2n
.

See Figure 15 for the blending function, and also the related
test object #4 in Section 5.

Note that using a single control point for editing the interior
is not always meaningful in an arbitrary concave domain, as in
some cases two or more would be needed (e.g. for symmetry
reasons). The placement and weight of multiple interior control
points is currently part of ongoing research.

5. Test results and discussion

In this section we present a few test examples to demonstrate
the basic properties of concave GB patches. In all of the images
curvature maps and isophote lines are computed by standard
approximation methods [20] based on a densely sampled mesh.
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(a) S-patch – full control network

72

(b) S-patch – control points snapped (c) Concave GB patch control network

Figure 16: Control network of an 8-sided planar patch with cubic boundaries.

Figure 17: Curve network of test object #2.

Test object #1

Here we compare the control network of concave GB patches
to that of S-patches. As an example, we take a planar U-shaped
object with eight sides.

Setting the degree to cubic, an S-patch would require 120
control points to represent this surface. The default placement
of these is shown in 16a. Note that many points lie outside the
concave region. It is a frequently applied procedure to merge
the interior control points, i.e., those that are not adjacent to
the boundaries. In our case, this would mean snapping 72 con-
trol points together and leaving the configuration shown in Fig-
ure 16b. We believe that even the remaining arrangement is not
intuitive; in general it is very hard to find sensible locations for
both the independent and the merged control points.

In contrast, the control points of a concave Generalized
Bézier patch form an easy-to-grasp configuration. In our ex-
ample in Figure 16c, there are only 16 extra control points as-
sociated with the sides (four pairs of twist control points have
been merged, and two pairs remained independent).

Test object #2

This is a simple test example with another 8-sided, U-shaped
polygon. The far side is lifted and the remaining boundaries
are kept in the XY-plane; the related cross-derivatives are set to
ensure smooth tangential connections. The control points are

(a) Mean curvature map

(b) Slicing

Figure 18: Patch generated by the algorithm in [7].

shown in Figure 17. Here we wish to compare our scheme to
that in [7].

Kato proposed a projective domain with a local parameter-
ization based on edge lengths. The blends used in the paper
interpolate one side and vanish on all other sides, thus they are
singular at the corners. These functions decrease rapidly in the
vicinity of the boundaries, which may cause sudden curvature
changes.

Figures 18a and 18b indicate this shape deficiency of Kato’s
surface. The interior of the patch is nicely blended, but due
to the above reason the influence of the ribbons is weak, see
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(a) Mean curvature map

(b) Slicing

Figure 19: Concave GB patch.

related curvature map and slicing images. Figures 19a and 19b
show the concave GB surface with the same control structure.
As it can be observed, the transition from the 3D boundaries
towards the interior shows a more natural, even curvature and
contour distribution; this also yields much better control of the
cross-derivatives.

Test object #3

This example shows a patch layout with two 8-sided concave
patches. On the left and right there are two extruded surfaces,
and there is a planar six-sided face on the top. We wish to create
naturally pleasing concave surfaces that smoothly connect the
extrusions with the perimeter loop of the top face. The control
structure and the shaded multi-sided patches are shown in Fig-
ure 20a; slicing, curvature map and isophotes are displayed in
Figures 20b, 20c and 20d, respectively.

Test object #4

This test surface is a setback-type vertex blend that connects
three edge blends. The rail-curves of the adjacent edge blends
intersect at 90 degrees, and a concave patch with nine bound-
ary curves is obtained. The patch is symmetric and in this case
an obvious center control point can be defined. The sequence
in Figure 21 shows three surfaces with different central control
point settings. The first surface is somewhat flat; the curvature
of the second one is nicely distributed; the third one has a some-
what artificial bulge in the middle.

(a) Shaded patches with control points

(b) Slicing

(c) Mean curvature map

(d) Isophote lines

Figure 20: Test object #3.

Test object #5
This example shows a free-form curve network interpolated

by two 5-sided convex patches, one 4-sided convex patch, and
one 8-sided concave patch. The boundaries are quartic Bézier
curves. The patches are smoothly connected across the shared
boundaries. Editing the curve network automatically modifies
the related patches. Figures 22a and 22b show the control struc-
tures and a mean curvature map, respectively, while in Fig-
ure 22c the contour lines visually indicate G1 continuity.
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(a) “Underfull” patch (b) Full patch (c) “Overfull” patch

Figure 21: Test object #4.

Test object #6

In this example we demonstrate how to edit concave GB
patches. We have a simple automotive part with eight boundary
curves. The reference model is defined by cubic curves and cu-
bic cross-derivatives (di = 3, li = 2 for all i); curvature map and
slicing is shown in Figure 23a.

First we add two concave corner control points (colored
black) and modify the shape by means of these – see Figure 23b.
Then we go back to our reference model and increase the de-
grees; starting from the left corner in clockwise direction we
obtain curves with degrees 3,5,3,5,3,4,5,4. Note that for the
two quintic boundaries the number of layers has also been in-
creased to 3. We have edited the control points to modify the
right boundary curve and the interior shape, as shown in Fig-
ure 23c.

Conclusion and future work

We have described a new patch that extends the concept of
Generalized Bézier patches [1] to concave polygonal domains.
Boundaries and cross-derivatives are given in control point
structures compatible with quadrilateral patches. New technical
solutions were introduced for half-Bézier ribbons, parameteri-
zations and blending functions within concave domains. Edit-
ing the interior of these patches is solved using special control
points.

Generating concave surfaces is a difficult problem, and our
current project raised interesting questions. Compatibility is-
sues of higher degree derivatives and the optimal placement of
extra control points at the concave corners are problems of in-
terest. We are also thinking about alternative parameterization
methods with non-negative side and distance parameters to re-
place the current harmonic coordinates; power coordinates [21]
may open an avenue to obtain direct parametric evaluations.
The relative strength of the control points decreases for patches
with many edges; a new parameterization method or alternative
internal control structures could help to overcome this problem.
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(a) Control structures (b) Mean curvature map (c) Contours

Figure 22: Test object #5.

(a) Reference patch (left: mean curvature, right: slicing)

(b) Concave corner control points added (left: mean curvature, right: slicing)

(c) Degree elevated patch modified (left: mean curvature, right: slicing)

Figure 23: Test object #6.
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