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A B S T R A C T

We investigate genuinely multi-sided patches that interpolate ribbon surfaces along
their boundaries. Recent works suggest defining patches over parametric domains with
curved boundaries and hole loops, where the domain mimics the shape of the surface to
be constructed. Cross-derivatives of the input are interpreted with respect to this curved
parametric domain, but it is an open question how to initialize and modify these vector
functions.

We propose algorithms to set the cross-derivatives of multi-sided patches defined by
Bézier and B-spline ribbons. Boundaries and surface constraints are inherited from ad-
jacent patches, and our goal is to define a nice surface while ensuring smooth (G1)
connections. We exploit that ribbon parameterizations induce ‘proportional’ cross-
derivative magnitudes in 3D, and express cross-derivatives as the combination of vector
functions and appropriately chosen scalar functions.

Continuity constraints imply complex relations between the control points of the rib-
bons, so their direct modification is not feasible. Instead we suggest a constrained
editing technique based on control vectors that significantly simplifies this task.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We investigate ribbon-based, genuine multi-sided surfaces
satisfying positional and cross-derivative boundary constraints,
thereby smoothly connecting to adjacent tensor-product and
multi-sided surfaces, while also possessing a natural blend in
the interior. Recent publications suggest the use of parametric
domains with curved boundaries and hole loops, see the Gen-
eralized Bézier and B-spline patches in Várady et al. [1] and
Vaitkus et al. [2], respectively. Curved domains are inevitable
in cases where the boundary curves are placed irregularly, have
significant variation in length, and contain strongly concave
segments (this is illustrated later in Fig. 12a).

The majority of publications on multi-sided patch represen-
tations in the CAGD literature deals with surfacing schemes
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where predefined surface interpolants (ribbons, see e.g. Salvi
et al. [3]) are combined using various blending functions. In
practice, however, such ribbons are not given a priori, and their
construction, while an important issue, seems to be a somewhat
unexplored area. Our interest is to define genuine multi-sided
patches based on tangential surface constraints, exploiting only
partially given cross-derivative information. We deal with two
typical scenarios:

1. For hole filling or vertex blending the surrounding surfaces
explicitly specify constraints for cross-derivatives (G1),
see e.g. Figure 1a.

2. In curve network based design the cross-derivatives are
supposed to approximately (NG1) match smooth vector
functions shared across the boundaries, such as rotation
minimizing frames; an example is shown in Figure 1b.
(We use the notation NGk for numerical/approximative
Gk-continuity, see also Section 4.1.)

It is well-known that the first derivatives of high-quality para-
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(a) Surface constraints for vertex blending/hole filling

(b) Normal fence constraints for curvenet-based design

Figure 1: Different applications of multi-sided surfaces.

metric curves and surfaces need to be set proportionally to the
extent of the whole shape, as this determines the ‘velocity’ of
these curves and surfaces at their parametric boundaries. The
magnitude of the first derivatives cannot be inferred from a
regular polygonal domain. However, if we have a curved do-
main that is a moderately distorted proportional map of the
multi-sided patch, we can deduce information related to the
magnitude of the individual ribbons. In fact, interpretation of
parametric cross-derivatives in a consistent manner is possi-
ble only based on the (curved) domain and its parameteriza-
tion. Larger or smaller magnitudes typically increase or de-
crease the curvature of the surface interior. In extreme cases,
large cross-derivatives overshoot and the patch wrinkles, while
small derivatives produce flat spots, see Fig. 13. Note that pro-
portional parameterization is a well-accepted idea in CAGD,
take for example non-uniform B-splines, where the knot vector
and the placement of the control points need to be set according
to the shape.

Setting suitable initial cross-derivatives for multi-sided
patches is a difficult problem. When we deal with complex
geometries and hole loops, the cross-derivative functions may
have complex shapes. For each boundary curve the ‘opposite’
part of the domain will determine the magnitudes of the cross-
derivatives, as these are in strong correspondence with the sur-
face to be constructed. The following sequence illustrates our
concept. Figure 2a shows a portion of a curve network with
a given G1 constraint inherited from the patch below. Fig-
ure 2b shows a ‘narrow’ 4-sided patch, where in order to avoid
overshooting, the cross-derivative function must be pulled back.
Figure 2c is an extended 6-sided patch, and an upscaled cross-
derivative function is required to avoid flatness in the middle of

the surface. Finally, in Figure 2d, a hole loop has been inserted,
thus the related cross-derivative should be contracted accord-
ingly.

Our contribution in this paper is twofold. We assume that
the cross-derivative constraints from the surrounding patches
are fixed. First we introduce an algorithm to construct pro-
portional initial ribbons for multi-sided patches. Then we de-
scribe how to edit the interior control points of ribbons simul-
taneously, and thus how to adjust the magnitudes of the cross-
derivative functions. In our project we deal with G1 surface
constraints, and apply these techniques primarily to the recently
introduced Generalized Bézier (GB) and Generalized B-spline
(GBS) patches, see Várady et al. [1] and Vaitkus et al. [2], re-
spectively. It is possible to generalize the proposed technique
for G2 continuity, but the algebra is quite cumbersome and
leads to high-degree ribbons. We believe that ensuring approx-
imate curvature continuity produces surfaces with better curva-
ture distribution—see also similar thoughts in Karčiauskas and
Peters [4]. A particular solution for connecting GBS patches
with NG2 was reported in Vaitkus et al. [2].

In Section 2 we briefly review the related literature. In Sec-
tion 3 we describe how cross-derivatives are constructed and
show how weighting functions for scaling and shearing can be
set by means of control vectors. In Section 4 we investigate
algorithms for setting and editing constrained cross-derivatives.
Finally, in Section 5 we evaluate the proposed method and show
a few more test cases.

2. Previous work

2.1. Multi-sided surfaces

We consider only genuinely multi-sided surfaces—see Mal-
raison [5], Várady et al. [6]. We are aware of only a few sur-
face representations that use curved domains (e.g. Martin and
Reif [7], Sabin et al. [8]) and allow multiply-connected topol-
ogy (e.g. Kato [9], Sabin [10]). Generalized Bézier [1] and Gen-
eralized B-Spline [2] patches possess these capabilities and thus
form the foundation for our examples.

2.2. G1-continuous splines

The geometric continuity of surfaces is a classical topic
within CAGD—see Peters [11] or Kiciak [12]. We are primar-
ily concerned with G1 (i.e., tangent plane) continuity of Bézier
and B-spline patches. The necessary-and-sufficient geometric
conditions for G1 continuity are highly nonlinear, so in prac-
tice sufficient conditions are considered that enforce a partic-
ular linear dependence between (cross-)derivatives (equivalent
to C1 continuity after a (fixed) reparameterization, see Peters
[11]). We rely on a formulation of G1 continuity that explic-
itly defines one of the cross-derivatives as a combination of the
derivative of the common curve and the cross-derivative of a
surface constraint [13]; this form is equivalent to the most gen-
eral G1 constraint [14] and is often preferred in practice (e.g.
Hoschek and Lasser [15], Renner [16], Shi et al. [17]).

To gain more flexibility, B-splines are often used instead of
high-degree polynomials, but G1 continuity poses some diffi-
culties [18]. In particular, industry-standard degree-3 splines
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(a) Portion of a curve network and
a constraining surface

(b) Opposite boundary narrows
the cross-derivative

(c) Opposite boundaries enlarge
the cross-derivative

(d) Hole in the middle shrinks the
cross-derivative

Figure 2: Cross-derivatives adapt to various boundary configurations.

cannot be G1-continuous across arbitrary curves, unless their
regularity is at most C1 [19], or their degree is raised to at least
5 [20]. As a consequence, cubic B-spline surfaces with NG1

continuity are often preferred, as long as the error is kept within
a prescribed tolerance [21]; see Kiciak [12] for relevant results
of approximation theory.

2.3. Automatic setting of derivatives

Adaptive data parameterization is an important aspect of
spline curve fitting and interpolation, where chordal and cen-
tripetal methods are popular choices with good theoretical prop-
erties [22]. Extending non-uniform parameterizations to non-
tensor-product surfaces is a challenging problem due to difficul-
ties of defining a suitable parametric domain [23], so a procedu-
ral approach is used in practice, where patches are individually
defined with Gk continuity constraints. Shirman and Séquin
[24] carried out an in-depth empirical study of possible heuris-
tics for setting derivatives of G1 Hermite curves. The majority
of existing geometrically continuous spline constructions con-
sider exclusively topological information [25], or operate over
a fixed multi-patch parameterization [26].

Cross-derivatives in a general topology network are often
constructed from boundary curves by interpolating derivatives
determined at the endpoints [27, 17], but this does not take
the global shape of the patch into account. Konno et al. [28]
presented heuristics for determining derivative magnitudes of
4-sided ribbon-based patches. Kiciak [12] describes various
methods for setting cross-derivatives of tensor-product surfaces,
based on 3D distances between opposing curves to be interpo-
lated, as well as mapping vector sweeps along 2D trimming
curves into 3D. Shen et al. [29] used a local parameterization
of a curved domain to fix the derivatives of a non-uniform sub-
division surface approximating a trimmed NURBS. The pre-
vious two methods directly set cross-derivative vectors, while
our approach, in contrast, produces scalar functions for general
G1-continuous connections. We are not aware of any work that
studied the problem of setting cross-derivatives for genuinely
multi-sided patches.

2.4. Constrained editing

In a seminal work, Shirman and Séquin [30] investigated
the possibilities for editing Bézier ribbon surfaces of Gregory

patches while preserving G1 continuity. For cubic ribbons, the
authors identified degrees of freedom allowed by continuity
constraints—named bulge, shear, and tilt—that can be edited
in an intuitive manner via the central coefficient of a common
quadratic surface constraint. Konno, Chiyokura and others later
extended this idea to higher order Gregory–Coons patches [28],
as well as B-spline and NURBS boundaries [31, 32]. In these
works, a notion of control vector was introduced, which re-
ferred to vector coefficients of a surface constraint shared by ad-
jacent surfaces. B-spline ribbons were converted into C0 piece-
wise polynomials, apparently to avoid dealing with the com-
plexities of general G1 B-spline constraints. In contrast, our
proposed constrained editing framework handles Bézier and B-
spline ribbons with general degree and knot structure, avoiding
algebraic difficulties that hindered previous attempts.

3. Constrained cross-derivatives

In this section we describe our cross-derivative concept in a
fairly general setting, but our algorithms will be introduced in
Section 4 by ribbons given in Bézier and B-spline form. The
test surfaces in this paper were produced using Generalized
Bézier (GB) and Generalized B-spline (GBS) patches; their for-
mulation is briefly presented in Appendix A. Note, however,
that our apparatus is also applicable to the constrained editing
of general G1 ribbon-based surfaces.

3.1. A general multi-sided surface model

We investigate interpolating multi-sided patches, defined by
a combination of open or periodic ribbon surfaces that prescribe
positions and cross-derivatives along the surface boundaries.
The surfaces, denoted by S(u, v), are defined over a curved do-
main in the (u, v) plane, which may have curved boundaries and
hole loops. A fundamental assumption here is that the domain
resembles the surface to be constructed, i.e., it is a ‘flattened’
version of the surface with moderate distortion. One particular
option to produce curved domains is detailed in Várady et al.
[1], where (in essence) a development of the boundary curves is
computed in the tangent planes of the ribbon interpolants, and
thus the shape of the boundary is preserved as seen from ‘within
the surface’. More technically, geodesic curvature is preserved
as much as possible. Alternative curve domain algorithms can
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also be derived by flattening a coarse preliminary 3D triangula-
tion, see for example Zou et al. [33].

For each ribbon Ri(si, hi) there is a parameterization that as-
signs local (si, hi) parameters for all (u, v) points of the do-
main. Parameterization determines how the points of the rib-
bon are mapped onto the multi-sided patch. The side parameter
si = si(u, v) varies linearly on side i between 0 and 1; the dis-
tance parameter hi = hi(u, v) vanishes on side i and increases
monotonically within the domain, eventually reaching 1 on the
distant sides ( j , i − 1, i, i + 1).

Parameterizing ribbons is a complex problem, in particular
for curved domains. While there is an intense search for al-
ternative methods, in our project we use harmonic functions,
which are constrained minimizers of the Dirichlet energy

minimize
f

∫
D
|∇ f |2 dA

subject to f (x) = b f (x), x ∈ D f .

(1)

Here f = si or hi, as defined above, and b f encodes the Dirich-
let boundary conditions for the constrained subset of the do-
main boundary D f . Harmonic functions are preferred, as they
are C∞-continuous in the interior, and take their minimal and
maximal values on the boundary. For hole loops a periodic pa-
rameterization is used, following Vaitkus et al. [2].

3.2. Cross-derivatives with constraints
For each ribbon Ri(si, hi), we construct a cross-derivative

function, Rh,i(si, 0) = ∂
∂hi

Ri(si, 0), that must satisfy external G1

surface constraints in the form of vectors functions Di(si) rep-
resenting cross-derivatives from the adjacent patches. We apply
the following well-known formula [15, Chapter 7] (index i and
parameter h are omitted from now on for convenience):

Rh(s) = α(s)D(s) + β(s)Rs(s). (2)

Here Rs(s) denotes the first derivative in the longitudinal di-
rection, and α(s), β(s) are scalar weighting functions: α(s) is
responsible for scaling, i.e., setting the magnitude of Rh(s),
while β(s) provides shearing, i.e., the rotation of Rh(s) around
the surface normal. This formula guarantees G1 continuity,
as at each point of the boundary the normal vector of the
patch will be parallel to that of the constraining surface, i.e.,
Rs(s) × Rh(s) ∥ Rs(s) × D(s). Obviously, in this type of con-
struction the degree of the ribbons is generally raised.

There is a great variety how these functions can be chosen
and naturally infinitely many cross-derivatives exist that match
given surface constraints. Our goal is to define scalar functions
with geometric meaning that can produce good initial settings
and facilitate the editing of ribbons. The scalar functions pos-
sess certain degrees of freedom dαβ; more DoFs permit more
flexible cross-derivative functions. In our project we follow
some simple—though not necessary—conventions:

1. For Bézier ribbons both scalar functions are given in
Bézier form, and their degrees are assumed to be equal.

2. For B-spline ribbons, both scalar functions are set to cubic
B-splines, defined over the same knot vector as the given
boundary curve.

Figure 3: Components of a control vector.

In both cases, dαβ is determined by the related degrees and the
number of knots.

The degrees of the prescribed vector functions D(s) and Rs(s)
may differ, and we remark that the constraining surface often
has a lower degree than the corresponding boundary. For exam-
ple, D(s) can be a constant vector or a linear sweep, when the
multi-sided patch joins simple surfaces, such as fillets or lofts.
In other cases, D(s) may represent a planar vector function. As
an example, take the simple test object in Figure 1b, defined by
six cubic B-spline boundaries and two constant (C), one planar
(P), one quadratic (Q) and two general free-form (F) constraint
surfaces.

3.3. Control vectors

Take the cross-derivative function at an arbitrary parameter
value sk. The vector Rh(sk) lies in the tangent plane, spanned
by two local vectors D(sk) and Rs(sk), with coefficients α(sk)
and β(sk). Going the other way around: assume we want to ad-
just the cross-derivative function via a prescribed control vector
CVk at parameter sk. The control vector unambiguously defines
two scalar values αk and βk in the basis (D(sk),Rs(sk)) of the
local tangent plane, see Fig. 3. If α(sk) = αk and β(sk) = βk

are enforced, the related scalar functions will guarantee that
Rh(sk) = CVk.

We may have a collection of constraints at various parame-
ter values that will indirectly define the related α and β scalar
functions at certain parameter values. As we modify the CVk-s,
they change the corresponding cross-derivative function and the
related control points. Note that relocating the control points of
Bézier or B-spline ribbons directly in 3D, while retaining con-
tinuity, is a hopeless task in general, as the interdependency of
the related control points is quite complex. However, if we per-
form editing by means of the control vectors, G1 continuity is
automatically guaranteed and the control points can be recalcu-
lated in a straightforward manner.

At this point we do not wish to limit the number or placement
of the control vectors, and remark that they can be positioned
at arbitrary parameter values, or by some rule such as uniform
division, knot points or Greville abscissae, depending on the
editing operation we wish to perform (see examples later).

3.4. A simple example

The above concept is demonstrated by a very simple exam-
ple. Assume that our ribbon R(s, h) has a cubic boundary and
a quadratic constraint function D(s). Thus the first derivative
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(a) Initial patches, no G1 continuity (b) G1 continuity is set

(c) Control vectors added (d) Control vector 2 modified

Figure 4: Modification with control vectors, showing isophotes.

is also quadratic by s. All three vector functions are given in
Bézier form:

Rh(s) =
3∑

i=0

Qh,iB3
i (s), (3)

D(s) =
2∑

i=0

DiB2
i (s), (4)

Rs(s) =
2∑

i=0

Qs,iB2
i (s). (5)

In order to match the tangent vectors of the adjacent boundary
curves at the corners, we set end constraints at s = 0 and s = 1;
these can be satisfied by linear α(s) and β(s) functions (dαβ =
2):

α(s) = α0(1 − s) + α1s, β(s) = β0(1 − s) + β1s. (6)

The two control vectors CV0 and CV1 are fixed indirectly at the
two ends:

Rh(0) = CV0 = α0D0 + β0Qs,0, (7)
Rh(1) = CV1 = α1D2 + β1Qs,2. (8)

Now assume that we wish to adjust the middle part of the
cross-derivative function. New degrees of freedom are obtained
by degree elevating to a new cubic function (dαβ = 4) with
Bernstein coefficients {α0,α1,α2,α3} and {β0,β1,β2,β3}, where α1,
α2 and β1, β2 are free to set. We may modify a related control
vector CV2 at sk =

2
3 , so that CV2 = α2D( 2

3 ) + β2Rs( 2
3 ). This

determines the weighting functions, and we can compute the
related control points of the ribbon in a straightforward manner.
A quadratic constraint and cubic weighting functions will lead
to a quintic cross-derivative. In our example, if we perturb CV2
by

α2 ⇒ α2 + ∆α2, β2 ⇒ β2 + ∆β2, (9)

then the displacement of the interior control points will depend
only on ∆α2 and ∆β2.

User-defined boundary curves

Curved domain

Initial cross-derivatives

Patch evaluation

Modification using control vectors

Figure 5: Overview of the general workflow.

Figure 4 illustrates this simple example. We start with two
cubic patches without G1 continuity. The bottom patch defines
a quadratic cross-derivative constraint (Fig. 4a). Then by lin-
ear weighting functions we ensure G1 continuity (Fig. 4b). Two
new degrees of freedom are added by two control vectors in the
middle producing a quintic patch (Fig. 4c). When the right con-
trol vector is modified, the interior control points are simultane-
ously relocated, and G1 continuity is retained (Fig. 4d). These
images with isophotes show perfect G1 continuity (and also rea-
sonably good numerical curvature continuity in this case).

4. Algorithms to set cross-derivatives

In this section we discuss various techniques to construct
cross-derivatives based on scalar weighting functions. An
overview of our workflow is shown in Fig. 5.

4.1. Initial placement of ribbon control points

As it was explained earlier, we cannot determine an appro-
priate cross-derivative function of a multi-sided patch locally,
using only a surface constraint from an adjacent patch. We need
global shape information, as our cross-derivatives are supposed
to adapt to the remaining (opposite) part of the patch. At first
sight this seems to be unsolvable, since the surface does not ex-
ist yet, but we claim that sufficient information can be extracted
from a curved domain. It is our basic assumption that there
exists a domain in 2D that resembles the surface, and for each
ribbon the (s, h) parameterization proportionally distributes the
isolines within this domain. The examples in Fig. 6 show h-
isolines of the bottom boundary distributed within an enlarged
domain and in a domain with an interior hole.

Consider a simple bicubic Bézier patch. Its h = 1
3 iso-

lines, mapped onto the surface, mimic the magnitude of the
cross-derivative functions (divided by three due to the degree-
3 blending functions). If the control points in the second row
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(a) Extending parameterization

(b) Shrinking parameterization

Figure 6: Constant (s, h) parameter lines.

are modified, the h = 1
3 isolines also shift in a strongly corre-

lated manner. This leads to our multi-sided concept. Assum-
ing we have cubic blending functions in the cross-direction, the
h = 1

3 isolines of the curved domain will deliver good estimates
for the magnitude of the cross-derivative functions in 3D. In
other words, if we lift the related difference vectors from 2D
to 3D, these produce a reasonable initial scaling for the cross-
derivative functions. This is illustrated in Figure 7 for a 6-sided
GBS patch.

We propose to define the scaling function α(s) by a simple
approximative approach. Sample the boundary curve h = 0 and
the isoline h = 1

3 in the 2D domain, compute the distance li be-
tween associated points at the sampled parameter values si, and
set the cross-directional scaling to αi = li/∥D(si)∥, leading to a

(a) Curved domain: h = 1
3 isolines,

with control vectors at the Greville
points of the domain boundaries

(b) Surface: h = 1
3 isolines mapped to

3D, with control vectors at the bound-
ary points, and approximate control
points in the second rows

Figure 7: Isolines on a curved domain and the corresponding surface.

(a) Degree-6 surface, initial placement, G1 ribbon

(b) Degree-3 surface, initial place-
ment, NG1 ribbon

(c) Degree-3 surface, initial placement,
refined NG1 ribbon

Figure 8: Initial placement with exact and approximate G1 continuity.

sequence of αi values. Approximating these by a scalar Bézier
function of a given degree or a B-spline with a given knot vec-
tor produces an appropriate scalar function α(s) that guarantees
that the resulting cross-derivative function retains G1 continuity.
In the unlikely case when the approximation error exceeds the
(typically loose) angular tolerance, the representation of α(s)
may need to be refined.

There may be applications where it is sufficient to keep the
cross-derivative function in the form defined by Eq. (2), and
the ribbons can be evaluated in a procedural manner. How-
ever, when we deal with GB or GBS patches (see Appendix A),
the ribbons need to be represented by Bézier or B-spline con-
trol grids. For Bézier ribbons the use of scalar weighting func-
tions leads to degree elevation; for B-spline ribbons, the prod-
uct of the B-spline functions will lead to degree-6 ribbons over
the original knots (with multiplicity). A simple and efficient
method for B-spline multiplication can be found in Che et al.
[34].

In many CAGD applications algebraic G1 continuity is a cru-
cial issue. At the same time, there are other cases where nu-
merical continuity (NG1) is sufficient, i.e., we only require that
the angular deviation of the normal vectors along the boundary
to be less than a certain tolerance. We can produce an approx-
imate cross-derivative function from the exact solution, where
the cubic degree and the number of control points is retained. If
the tolerance criterion is not met, the knot vector can be refined.

As an illustration, Figure 8a shows exact degree-6 ribbons
and their control points; Fig. 8b shows approximate degree-3
ribbons, and Fig. 8c shows a variation where a few knots are
inserted to meet the prescribed angular tolerance (0.1 degree).
Related data are supplemented in the next section (Table 1).
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Figure 9: Control vectors.

We would like to emphasize that in our view it is hardly pos-
sible to define a single best setting of the cross derivatives, as it
may depend on user requests and the type of application. How-
ever, our algorithm is capable of producing good initial solu-
tions in the majority of practical cases, and represents a suit-
able basis for creating shape variations or fine-tuning surface
qualities where needed. A few examples will be shown later in
Section 5.

4.2. Constrained editing of ribbons

Editing ribbons may be necessary for various reasons, such
as (i) improving the initial cross-derivatives, (ii) fine-tuning the
shape interior, or (iii) adjusting surface qualities (isophotes, cur-
vature distribution, etc.). As indicated earlier, constrained edit-
ing of the ribbon control points is an almost impossible task
due to the fairly complex system of algebraic equations that de-
termines G1 continuity. Modification through α(s), β(s) func-
tions simplifies the problem, since adjusting the related coef-
ficients, as defined by Eq. (2), provides an automatic solution
to maintain continuity and modify only the involved control
points. Modifying the graphs of these scalar functions would
be cumbersome and artificial; in contrast, the control vector
technique makes editing intuitive in 3D space, as it assigns ge-
ometric meaning to the related functions being modified in the
background. As an illustration, we have assigned two internal
control vectors to each boundary of the test surface in Figure 9.

While it is possible to set up a couple of control vectors and
construct scalar functions that simultaneously interpolate given
vectors, we prefer another step by step approach, that was found
useful in our design exercises. We can place a control vector to
a given point of the boundary and tweak it as required. This
defines an interpolating constraint for α(s) and β(s), and as they
are given in B-spline form, the functions can be modified in
a fairly stable way using the algorithm described by Piegl and
Tiller [35, Section 11.2]. The scalar functions α(s) and β(s) are
modified locally by proportionally relocating two (or more) ad-
jacent control coefficients, whose Greville abscissae surround
the selected parameter value. An example is shown in Fig-
ure 11. If the selected parameter value happens to be a Greville
abscissa, then only a single control point of α(s) and β(s) will
be modified. A similar algorithm can be applied for the local
modifications of α(s) and β(s) given in Bézier form, as well.

In Figure 10 we present how editing by control vectors pro-
ceeds. We also visualized the cross-derivative surfaces mul-
tiplied by 1

3 , superimposed onto the multi-sided surface. We

modified the bottom side; observe how a single control vec-
tor pulls the surrounding exact (degree-6) and approximate
(degree-3) control points.

5. Discussion

In this section we evaluate the proposed constrained editing
technique through various test examples.

5.1. Bypassing common problems
The first sequence illustrates how multi-sided surfacing can

go wrong for a setback vertex blend surface with eight boundary
curves. Figure 12a shows that when a convex polygonal domain
is used, the patch deteriorates. In Figure 12b we use a nicely
parameterized curved domain, but the ribbon magnitudes are
excessive, leading to wrinkles in the interior. In Figure 12c,
the proposed initial setting of cross-derivatives produces a nice
patch.

5.2. Initial cross-derivatives
The six-sided patch in Figure 13 represents three variants:

(a) narrow ribbons (flat part in the middle), (b) large ribbons
(wrinkling), and (d) automatically set ribbons by the initial
placement algorithm. In (c) the curved domain is shown, ob-
serve the h = 1

3 isolines and the coloring that indicates where
the individual ribbons dominate.

Initial cross-derivative settings are shown for two simple test
objects with isophote lines (Fig. 14).

5.3. Editing
The six-sided vertex blend in Fig. 15 is highly curved, and

the global Gaussian curvature is high, and consequently the flat-
tened domain is relatively strongly distorted. In these cases the
initial cross-derivative setting will generally produce weak rib-
bons and dragging them towards the middle is often necessary.
The curvature in Figure 15a shows a flat interior, while after
editing the expected distribution is obtained (Figure 15b).

In Figure 16 we edit the surface seen on Fig. 10 by adding a
hole loop that lies on an extruded surface. Using a few control
vectors the transition between the middle part and the outside
boundaries is modified.

5.4. Approximate ribbons (NG1)
Returning to Figures 8b–8c, Table 1 shows the results of nu-

merical G1 approximation. We have set the angular tolerance
to 0.1 degree, and according to the data, Ribbons 3 and 5 (on
the left and right sides of the patch) are not accurate enough.
For this experiment, we have doubled the knots, and the ac-
curacy improved to a great extent. The approximate ribbons
are computed from the exact cross-derivatives by regularized
least-squares fitting. It depends on the context whether to prefer
these to the exact ribbons (less control points matching degree-
3 ribbons or more control points with degree-6 and algebraic
G1 continuity).

Another numerical example is given by analyzing the hole
loop in Fig. 16. The approximate representation had an angu-
lar accuracy of 0.39 degrees, which was reduced after inserting
knots to 0.041. In this particular case, the algebraic degree-6
ribbon has 2×35 control points, the approximate ribbon 2×14.
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(a) Original boundary (b) Edited ribbon (G1) (c) Edited ribbon (NG1)

Figure 10: Editing a ribbon with a control vector.

Ribbon Mean deviation Max deviation
R1 0.0007 0.0029
R2 0.0004 0.0010
R3 0.1044 0.1946
R∗3 →0.0029 →0.0078
R4 0.0086 0.0199
R5 0.1075 0.1956
R∗5 →0.0314 →0.0081
R6 0.0001 0.0003

Table 1: G1 approximation errors showing angular deviations (in degrees). Rib-
bons after knot refinement are shown with a star.

5.5. T-nodes

The proposed modeling paradigm, i.e., creating patches
through cross-derivative constraints, naturally supports the cre-
ation of patchworks with T-nodes. Imagine that a cross-
derivative function has been associated with a full curve and
is cut into pieces. Then the related portions are transferred to
the patches, and G1 continuity will be ensured along the whole
curve. Three T-nodes are shown on the left side of the test ex-
ample in Figure 17.

5.6. Complex sheet metal parts

The complex test part in Figs. 18a–18b illustrates that in sev-
eral cases one cannot associate a natural flow of isolines with
the shape, and by trimming it is quite difficult to meet pre-
scribed positional and tangential constraints. Here we have
three concave boundary curves, being explicitly defined by their
cross-derivatives. The patch is defined by a single parametric
equation and represents a nice blend between the boundaries,

Figure 11: A control vector modifies the scalar function at a given position; the
two adjacent control coefficients are relocated accordingly. The small squares
show the positions of the Greville abscissae.

though admittedly the isophotes should be enhanced at certain
places.

A test part is shown in Fig. 18c. The base patch has ten
boundaries, and adding two hole loops in the middle naturally
changes the patch interior. This surface is also defined by a sin-
gle parametric equation and the cross-derivatives were obtained
by initializing and editing ribbons based on the given constraint
surfaces. A more complex example is shown in Fig. 19 that de-
fines a concept car, consisting of eight 5-sided and six 4-sided
patches, also demonstrating T-node connections.

5.7. Limitations and future work

There are several open issues and deficiencies in the current
scheme. The most crucial is ribbon parameterization within a
curved domain, which fundamentally determines the quality of
multi-sided, multi-connected patches. Harmonic functions rep-
resent one particular solution; their evaluation is computation-
ally demanding, but multiresolution methods can speed it up
considerably. While in the great majority of cases harmonic co-
ordinates provide nice, evenly distributed parametric structures,
in certain cases they behave in an unexpected manner. This re-
quires further analysis and search for alternative parameteriza-
tions.

The initial setting of cross-derivatives produces ‘weak’ rib-
bons for highly curved multi-sided patches, and we search for
enhanced algorithms to detect and compensate this effect.

It must also be noted, that ribbon-based patches have a limita-
tion that in highly complex cases the information coming from
the ribbons may not be sufficient to properly define the surface
interior. In these cases, additional constraints or control struc-
tures need to be supplemented—this is also part of an ongoing
research project.

Conclusion

We have investigated constrained modeling to set cross-
derivatives for multi-sided, multi-connected patches. Our work
builds (i) on curved domains that represent a moderately dis-
torted planar map of the surface to be constructed, and (ii) on
scalar weighting functions (scaling and shearing) to set the
cross-derivatives of the ribbons that determine the patch. The
proposed initial placement method is based on the parameter-
ization of the ribbons within a curved domain. The proposed
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(a) Poor quality due to convex domain (b) Poor quality due to overshooting ribbons (c) Good quality due to proper initial settings

Figure 12: Setback vertex blend with poor and appropriate settings.

(a) Narrow ribbons (b) Large ribbons (c) Curved domain (d) Initialized ribbons

Figure 13: Effects of different ribbon magnitudes.

Figure 14: Test parts with isophotes.

(a) Initial setting (b) Edited

Figure 15: Ribbon editing to ensure even curvature in the middle.

(a) Before (b) After

Figure 16: Editing a periodic ribbon.

(a) Contouring (b) Mean curvature

Figure 17: Example with T-nodes.
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(a) Part 1 with mean curvature (b) Part 1 with isophotes (c) Part 2 with mean curvature

Figure 18: Complex examples.

Figure 19: Concept car model.

editing operations are performed by control vectors that simul-
taneously relocate a collection of control points. These meth-
ods automatically guarantee G1 continuity to the surrounding
patches and are useful for constructing good quality multi-sided
patches.
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Appendix A.

We summarize the formulation of GB and GBS patches in a
nutshell; for details, see Várady et al. [1] and Vaitkus et al. [2].
These interpolating patches are defined by a collection of open
or periodic ribbon surfaces that prescribe positions and cross-
derivatives along the surface boundaries. The i-th ribbon Ri is
defined by (di + 1) × (ei + 1) control points that correspond to
the longitudinal and cross directions, respectively. Its equation
is given as

Ri(si, hi) =
di∑
j=0

ei∑
k=0

Ci
j,kω

i
j,k(si, hi). (A.1)

Here si, hi ∈ [0, 1] denote the local ribbon parameters along and
across the boundary. For GB patches the weighting function is

the product of two Bernstein basis functions, for GBS patches
the product of B-spline and Bernstein basis functions (the for-
mer defined over a knot vector ξi with degree pi), i.e.,

ωi
j,k(si, hi) = Bdi

j (si)B
ei
k (hi) and (A.2)

ωi
j,k(si, hi) = Nξi,pi

j (si)B
ei
k (hi), (A.3)

respectively.
These patches are defined over a curved domain in the (u, v)

plane. For each ribbon there is a longitudinal and a distance
parameter (si, hi) that determine how the points of the ribbon
are mapped onto the multi-sided patch.

The multi-sided patch equation (Eq. A.7) sums weighted rib-
bons R∗i , which retain the control points of the ribbons Ri, but
employ modified blending functions:

R∗i (si, hi) =
di∑
j=0

ei∑
k=0

Ci
j,kΩ

i
j,k(si, hi), (A.4)

where

Ωi
j,k(si, hi) = µi

j(hi)B
di
j (si)B

2ei+1
k (hi) and (A.5)

Ωi
j,k(si, hi) = µi

j(hi)N
ξi,pi
j (si)B

2ei+1
k (hi), (A.6)

respectively. For both GB and GBS, Bernstein functions of de-
gree 2ei + 1 are applied in the cross direction. These ensure
positional and cross-derivative interpolation with Gei continuity
on side i, and guarantee that the weighted ribbons R∗i disappear
on the distant sides of the domain. Thus for G1 we use cubic,
for G2 quintic basis functions.

Each Ωi contains a rational correction term µi
j(hi), similar

to those defined by Gregory [36], that ensures the reproduction
of the given ribbon on the i-th side (hi = 0), and forces R∗i to
vanish on the neighboring sides i− 1 and i+ 1. The multi-sided
patch S(u, v) is defined as the sum of n weighted ribbons. In
order to ensure the convex combination property, we normalize
the patch by the sum of the corrected blending functions:

S(u, v) =
1

ΩΣ(u, v)
·

n∑
i=1

R∗i (si, hi), (A.7)

ΩΣ(u, v) =
n∑

i=1

di∑
j=0

ei∑
k=0

Ωi
j,k(si, hi). (A.8)

The curved domains of the GB and GBS patches are gener-
ated with the method detailed in Várady et al. [1], developing
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the boundary curves into the tangent planes of the interpolants.
For the parameterization we apply harmonic functions; further
details can be found in Vaitkus et al. [2].

Note that this representation is not directly compatible with
current CAD standards, but a conversion to NURBS can be per-
formed by approximation.
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