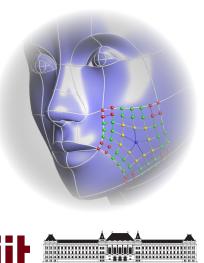
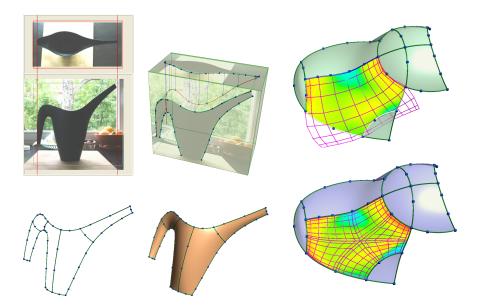
Multi-sided generalizations of the Coons patch

Péter Salvi, Tamás Várady


Budapest University of Technology and Economics

CSF Workshop on Generalized Barycentric Coordinates


Ascona, June 1-4, 2022

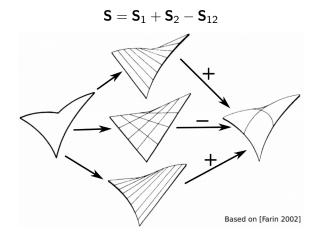
Motivation Preliminaries

Coons patch Patches with trilateral ribbons Generalized C^0 Coons patch Composite Ribbon patch Patches with bilateral ribbons Charrot–Gregory patch Midpoint patch Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch Summary

Motivation

Motivation

Preliminaries Coons patch


Patches with trilateral ribbons Generalized C⁰ Coons patch Composite Ribbon patch

Patches with bilateral ribbons

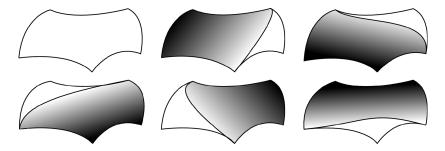
Charrot–Gregory patch Midpoint patch

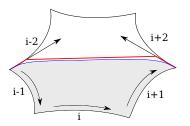
Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch

C^0 Coons patch

Motivation

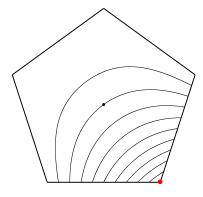
Preliminaries Coons patch

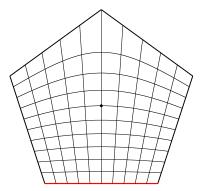

Patches with trilateral ribbons Generalized C^0 Coons patch Composite Ribbon patch


Patches with bilateral ribbons

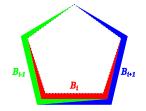
Charrot–Gregory patch Midpoint patch

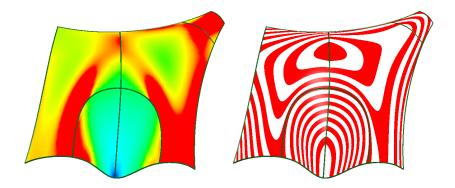
Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch


Generalized C^0 Coons patch



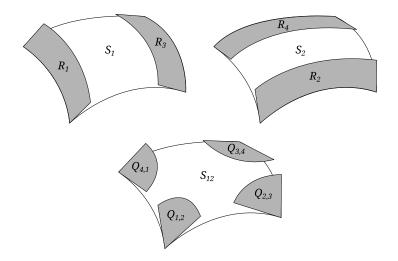
- $\blacktriangleright \mathbf{S} = \frac{1}{2} \sum_{i} \mathbf{C}_{i}^{0} B_{i}^{0}$
- Domain?
- Local parameterizations?
- Blending function?


Parameterization based on Wachspress coordinates

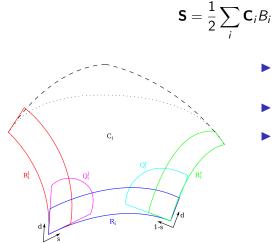


- side parameter $s_i = \lambda_i / (\lambda_{i-1} + \lambda_i)$
- distance parameter $d_i = 1 (\lambda_{i-1} + \lambda_i)$

► $B_i^0 = 1 - d_i$



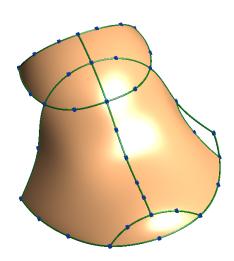
Example (mean curvature & contouring)

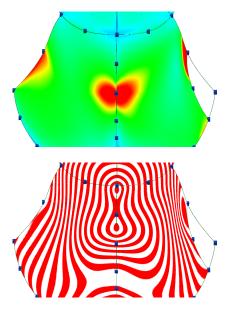


 C^1 Coons patch – reinterpreted with blended linear ribbons

$$S = S_1 + S_2 - S_{12}$$

Composite Ribbon patch



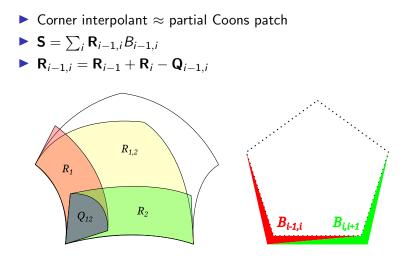

 Blending function? (derivative constraints)

$$\blacktriangleright B_i = B_{i-1,i} + B_{i,i+1}$$

•
$$B_{i-1,i} = \frac{\prod_{k \notin \{i,i-1\}} d_k^2}{\sum_j \prod_{k \notin \{j,j-1\}} d_k^2}$$

Example (mean curvature & isophotes)

Motivation

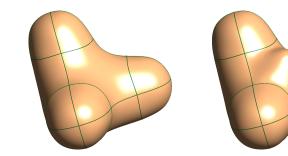

Preliminaries Coons patcl

Patches with trilateral ribbons Generalized C⁰ Coons patch Composite Ribbon patch

Patches with bilateral ribbons Charrot–Gregory patch Midpoint patch

Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch

Charrot–Gregory patch


Midpoint patch

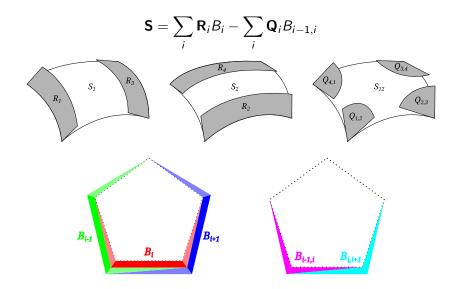
Alternative blending function:

$$B_{i-1,i}^{M} = \frac{d_{i-1}\alpha_0(s_i)\alpha_0(d_i) + d_i\alpha_1(s_{i-1})\alpha_0(d_{i-1})}{d_{i-1} + d_i}$$

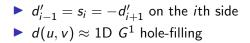
• $\alpha_0(x) = 1 - \alpha_1(x) = 2x^3 - 3x^2 + 1$ (Hermite blends)

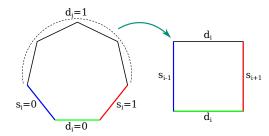
• Weight deficient \rightarrow extra DoF

Motivation

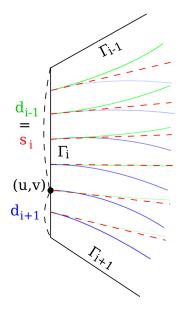

Preliminaries Coons patcl

Patches with trilateral ribbons Generalized C⁰ Coons patch Composite Ribbon patch


Patches with bilateral ribbons Charrot–Gregory patch Midpoint patch

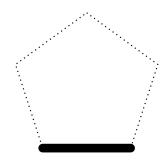

Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch

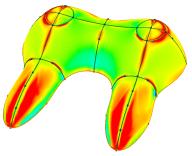
Generalized Coons patch



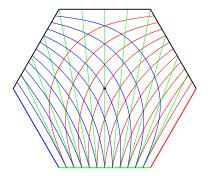
Constrained parameterization

Use Katō's patch



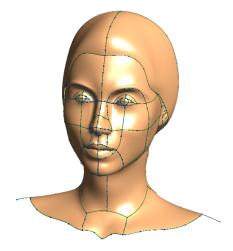

Katō's patch

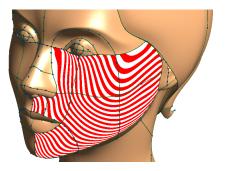
$$\mathbf{S} = \sum_{i} \mathbf{R}_{i} B_{i}^{*}$$


Singular blending function:


$$B_i^* = \frac{\prod_{k \neq i} d_k^2}{\sum_j \prod_{k \neq j} d_k^2}$$

Constrained parameterization – example




Midpoint Coons patch:

$$\mathbf{S} = \sum_{i} \mathbf{R}_{i} B_{i}^{M} - \sum_{i} \mathbf{Q}_{i} B_{i-1,i}^{M}$$

$$\blacktriangleright \ B_i^M = B_{i-1,i}^M + B_{i,i+1}^M$$

Example (contouring)

Motivation

Preliminaries Coons patc

Patches with trilateral ribbons Generalized C⁰ Coons patch Composite Ribbon patch

Patches with bilateral ribbons

Charrot–Gregory patch Midpoint patch

Patches with unilateral ribbons Generalized Coons patch Midpoint Coons patch

Summary

Patch type	Ribbon	Parametrization	Blending function
Generalized C^0 Coons		full	
Composite ribbon	trilat.	$d \in [0,1]$	
Midpoint	bilat.	full	
Charrot–Gregory		simple	
Generalized Coons	unilat.	constrained	
Midpoint Coons		constrained, full	
Katō		simple	

(full: d = 1 on the far sides)

Summary

Patch type	Ribbon	Parametrization	Blending function
Generalized C ⁰ Coons	trilat.	full	
Composite ribbon		$d \in [0,1]$	
Midpoint	bilat.	full	
Charrot–Gregory		simple	
Generalized Coons	unilat.	constrained	
Midpoint Coons		constrained, full	
Katō		simple	

(full: d = 1 on the far sides)

Related papers

1. Generalized Coons & Composite Ribbon patches:

P. Salvi, T. Várady, A. Rockwood, *Ribbon-based transfinite surfaces*. **Computer Aided Geometric Design**, Vol. 31(9), pp. 613–630, 2014.

2. Midpoint patch:

P. Salvi, T. Várady, *Multi-sided surfaces with fullness control*. Proceedings of the Eighth Hungarian Conference on Computer Graphics and Geometry, pp. 61–69, 2016.

3. Midpoint Coons patch:

P. Salvi, I. Kovács, T. Várady, *Computationally efficient transfinite patches with fullness control*. Proceedings of the Workshop on the Advances of Information Technology, pp. 96–100, 2017.

4. Generalized C^0 Coons patch:

P. Salvi, A multi-sided generalization of the C⁰ Coons patch. Proceedings of the Workshop on the Advances of Information Technology, pp. 110–111, 2020.