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Abstract
An important problem in Computer Aided Design is to create digital representations for complex free-form objects
that produce nice, predictable shapes and facilitate real-time editing in 3D. The clue to curve network-based
design is the construction of smoothly connected multi-sided patches. A new type of transfinite surface, called
Composite Ribbon (CR) patch is introduced, that is a combination of curved ribbons and ensures G1 continuity
over non-regular, convex polygonal domains. After discussing the construction and the preferred parameterization
scheme, a few simple examples conclude the paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Creating general topology free-form objects, composed of
smoothly connected surface patches, is a fundamental prob-
lem in CAGD. Aesthetic appearance is crucial for a wide va-
riety of models including cars, household appliances, office
furniture, containers and many others. While the majority
of such patches are four-sided, almost all industrial objects
contain general n-sided patches that need to be inserted into
some arrangement of quadrilaterals (e.g. Figure 1).

General topology surfacing is a tough problem, and all
known techniques expose deficiencies. A very simple exam-
ple is shown in Figure 2a, where a 3D network of adjacent
5- and 6-sided patches is to be edited and interpolated.

Figure 1: Concept car defined by orthogonal sketches.

The standard approach is to combine trimmed and stitched
bi-parametric surfaces that yield a model with numerical
continuity. The boundaries of the patches and the trimming
curves have different representational form and design flex-
ibility. Creating a truly symmetric three-sided patch is not
possible in the four-sided domain. It is not obvious in Fig-
ure 2b how to extend the given curve segments and how
to construct and edit the common middle trim curve with
smooth connection. Another approach is splitting n-sided re-
gions into smaller quadrilateral tiles, but adding an appro-
priate center point and internal subdividing curves may lead
to unexpected curvatures.

Recursive subdivision surfaces, controlled by a general
topology polyhedra, are used in many applications. These
yield a set of smoothly connected quadrilaterals combined
with n-sided surface patches, however, difficulties include
the “ab initio” creation of good control polyhedra and the
direct interpolation of curves with tangential constraints.

In this paper we explore a fourth approach, where the net-
work automatically spans a collection of multi-sided trans-
finite patches. Feature curves come from 2D sketches or
are defined in 3D. Editing the boundaries directly modi-
fies the adjacent patches, connected in a watertight man-
ner, thus users can focus on shape concepts and aesthetic
requirements. In this approach the interior of the shape is
solely defined by boundary ribbons, and there is no need to
deal with a grid of interior control points. Transfinite patches
also have their deficiencies — ribbons may not always meet
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(a) Curve network (b) Trimmed surfaces

(c) Ribbon surfaces (d) Transfinite surfaces

Figure 2: Comparison of different modeling approaches.

user expectations, and standard surfaces can only be repro-
duced in approximate sense. Figure 2d illustrates the sim-
plicity of curve network-based design. The network auto-
matically defines the ribbons (Fig. 2c), and the transfinite
patches (Fig. 2d). The curves can easily be modified and the
topology redesigned, then the model will adjust accordingly.

Transfinite surface interpolation is a classical area of
CAGD. Its origin goes back to the late 60’s, when Coons
formulated his Boolean sum surface [Coo67]. In the next
two decades, several papers were published, first on trian-
gular patches [Far02], and later on genuine n-sided patches,
see Charrot and Gregory [CG84, Gre86], Sabin [Sab96], and
Kato [Kat91]. The alternatives of creating n-sided transfinite
patches have been recently reviewed in [VRS11].

In this paper we present the Composite Ribbon or CR
patches. Unlike previous constructions, here we propose
combining curved (i.e., non-linear) ribbons, and introduce a
new ribbon parameterization using Wachpress coordinates.
CR patches will be demonstrated through a few examples,
and suggestions for future work conclude the paper. De-
tails of the construction and related proofs can be found in
[Sal12].

2. Composite ribbon patches

The CR patch is a transfinite surface interpolating n ≥ 3
boundaries Pi(si), 1 ≤ i ≤ n, and related cross-derivative
functions Ti(si). The surface is defined as a combination
of special curved ribbons, comprising the above functions.
Let Γ be a convex polygon in the (u,v) domain plane, and
map the sides of the polygon, Γi, onto the boundaries of the
patch. The local side and distance parameters of the ribbons
are computed from (u,v), i.e., si = si(u,v), di = di(u,v), and

we associate a blending function Bi(u,v) = Bi(d1, . . . ,dn) to
each side. To create a CR patch, the following constituents
must be provided: (i) an n-sided domain polygon, (ii) blend-
ing functions, (iii) n ribbon surfaces and (iv) appropriate
methods to parameterize the ribbons. For different domain
creation methods, see [VRS11]. All the other aspects will be
treated in the following sections, one by one.

2.1. Generalized blending functions

We need blending functions over the polygonal domain that
reproduce the ribbons along their boundaries. These need to
satisfy special interpolating properties. For each (u,v) point
we determine an n-tuplet of distance values. Each di is as-
sociated with the i-th side: di is equal to 0 on side Γi, and it
increases monotonically as we move away from Γi. In our
patch formulations distance-based rational blending func-
tions are used to combine ribbons. The basic requirement
is that the blending function Bi is equal to 1 on Γi, and van-
ishes on all non-adjacent sides Γ j, where j /∈ {i−1, i, i+1}.
We propose the rational function

Bi(d1, . . . ,dn) =
Di,i−1 +Di+1,i

∑ j D j, j−1
, Di1...ik = ∏

j /∈{i1...ik}
d2

j .

Due to the squared terms, the related partial derivatives of
the blending functions vanish, i.e.,

∂

∂dk
Bi(d1, . . . ,d j = 0, . . . ,dn) = 0

for j /∈ {i−1, i+1}, k ∈ [1 . . .n].

2.2. Ribbon surfaces

Curved ribbons comprise the positional and tangential infor-
mation along the boundaries. In contrast to linear ribbons,
they deviate “moderately” from the transfinite patch to be
created, and thus their combination produces a more pre-
dictable shape and less surface artifacts in strongly asym-
metric curvenet configurations. Nevertheless, curved ribbons
are composed of special linear ribbons and corner correction
terms, as follows.

Let us assume that the tangential boundary information
has already been specified by the user, or computed auto-
matically based on the given curve network. Using these
we can formulate conventional linear ribbons as Ri(si,di) =
Pi(si) + γ(di)Ti(si). In order to bring the 4-sided CR patch
very close to the cubically blended Coons patch, we intro-
duced a reparameterization function γ(di) =

di
2di+1 . Since

γ(0) = 0 and γ
′(0) = 1, it is easy to prove that the required

interpolation properties are satisfied. We introduce a corner
correction patch as

Qi,i−1(si,si−1) = Pi(0)+ γ(1− si−1)Ti(0)

+ γ(si)Ti−1(1)+ γ(si)γ(1− si−1)Wi,i−1,
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Figure 3: Construction of a curved ribbon.

where Wi,i−1 = ∂

∂si
Ti(0) = − ∂

∂si−1
Ti−1(1) denotes the twist

vector at the (i, i−1)-th corner (see [Far02]).

A curved ribbon is defined as the combination of three
consecutive linear ribbons, and it is actually a Coons patch
with three of its four sides given, defined over a local rect-
angular domain. Let Ci(si,di) denote the curved ribbon for
the i-th side; α0 and α1 are the cubic Hermite functions. We
simplify the notation and drop the indices of s and d, as it
does not cause any ambiguity. The definition of Ci is

Ci(s,d) = Rl
i(s,d)α0(s)+Ri(s,d)α0(d)+Rr

i (s,d)α1(s)

−
[
Ql

i(s,d)α0(s)α0(d)+Qr
i (s,d)α1(s)α0(d)

]
,

where Rl
i(s,d), Rr

i (s,d), Ql
i(s,d) and Qr

i (s,d) denote the rib-
bons and the correction patches on the left and right sides,
respectively (see Fig. 3). We parameterize these by the local
coordinates of the i-th side as follows:

Rl
i(s,d) = Ri−1(1−d,s), Rr

i (s,d) = Ri+1(d,1− s),

Ql
i(s,d) = Qi,i−1(s,1−d), Qr

i (s,d) = Qi+1,i(d,s).

This construction constrains both s and d to lie in [0,1].

2.3. Ribbon parameterization

The most crucial issue in all transfinite schemes is ribbon pa-
rameterization, i.e., how to compute the local side and dis-
tance parameters (si,di) from a given (u,v) domain point.
This determines the associated points of the ribbons and thus
has an essential effect on the shape. We have seen the re-
quirement that s j,d j ∈ [0,1] ( j ∈ [1 . . .n]); it is also natural
to require that each side parameter s j is linear, and di = 0,
si−1 = 1, si+1 = 0 are satisfied for all points lying on Γi.
The distance parameters d j ( j∈ [1 . . .n]) also change linearly
along the sides, so on the i-th side di−1 = si, di+1 = 1− si.

In the evaluation of parameterization methods there are
two main issues: (i) the constant si, di parameter lines must
have an even distribution in the domain, and (ii) the (u,v)→
(si,di) mappings must be simple and computationally effi-
cient. Let us deal with the si and di parameters separately.

(a) Construction (b) Isoparameter lines

Figure 4: Wachspress coordinate-based parameterization.

In the so-called linear sweep parameterizations [VRS11],
the si = const. isolines are straight lines in the domain space;
as si varies from 0 to 1 these lines sweep from side Γi−1 to
side Γi+1, for example using a linear mapping between them.
As for the di = const. isolines, applying Wachspress coordi-
nates [Wac75] turned out to be a good solution, concerning
shape and computational efficiency. Originally these assign
weights to the corners of a polygon, but it is possible to com-
pute distance isolines by them, as follows. The barycentric
coordinates λi are defined as

λi(u,v) = wi(u,v)/∑
k

wk(u,v),

where the individual weights are computed by Figure 4a:

wi(u,v) =Ci/(Ai−1(u,v) ·Ai(u,v)),

where Ai−1 = 4(pi−1,(u,v), pi), Ai = 4(pi,(u,v), pi+1)
and Ci =4(pi−1, pi, pi+1) represent triangle areas [HF06].

Then distance di is computed as

di(u,v) = 1− (λi−1(u,v)+λi(u,v)),

which satisfies the initial constraints and edge linearity, due
to the properties of Wachspress coordinates. An example us-
ing the above construction of si and di is shown in Figure 4b.

2.4. Assembling the composite ribbon patch

The CR patch has the simple formula:

S(u,v) =
1
2

n

∑
i=1

Ci(u,v)Bi(u,v).

According to the properties of the Bi blend functions, for
any point on the i-th boundary all addends of the sum vanish
except Ci−1, Ci and Ci+1. Since each of these ribbons also
interpolates the corresponding three boundaries, the related
three points on these ribbons are the same. Their cumulative
blend is

Bi−1 +Bi +Bi+1 = (Bi−1 +Bi+1)+Bi = 1+1 = 2,

which explains the division by two in the surface equation.
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(a) Conventional patch (b) Composite ribbon patch

Figure 5: Mean maps for two different surface types.

Figure 6: Ribbons and contours of a 5-sided patch .

CR patches ensure either parametric cross-derivative con-
tinuity (C1), or match the tangent planes of the ribbons along
the boundary (G1). This depends on the ribbon parameteri-
zation. Wachspress parameterization provides G1 continuity,
which is sufficient for most surfacing applications. For de-
tails and related proofs see [Sal12].

3. Examples

Former side-based transfinite schemes combined linear rib-
bons and applied different blending functions, see for exam-
ple [Kat91]. While these patches are computationally sim-
ple, they may produce uneven curvatures in the vicinity of
boundaries, due to the applied blending functions, that are
singular at the corners (see also [VRS11]). The main motiva-
tion to develop our new schemes was to avoid these artifacts,
see Figure 5. Figure 6 shows a patch with three of its curved
ribbons, a spider-like net of radial isolines and contours.

The curve network in Figure 7 comes from a 3D drafting
system (courtesy of Cindy Grimm [GJ12]). The network was
interpolated by CR patches.

Conclusion

We have focused on the most crucial part of curve network-
based design, i.e., how to represent collections of multi-
sided transfinite surface patches that naturally fit onto gen-
eral topology networks, and make shape editing easy and
predictable. The proposed CR patch is a combination of
curved ribbons and satisfy G1 continuity. Challenging future
research topics include fairing operations for curve network-
based models and approximating polygonal meshes by trans-
finite patches.

(a) Curve network (b) Shading (c) Contouring

Figure 7: Dolphin test model.
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