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Abstract
In curve network based design, surface patches are created automatically, based on positional and derivative
constraints at their boundaries. This is often achieved by transfinite interpolation schemes, which have little or
no control over the surface interior. In this paper we show a general framework for patch modification, which
preserves the continuity of the surface both internally, and at the connections to other patches. The proposed
method is applicable to any kind of surface – parametric, implicit or subdivision –, and gives the user flexible
editing capabilities over the modification area.

1. Introduction

Transfinite surface interpolation11 is a very convenient tool
for smooth hole-filling applications, and is the cornerstone of
curve network based design—a paradigm where the designer
draws feature curves, whose loops are automatically filled in
with smooth patches by the modeling system.

A drawback of these surfaces, however, is that they lack
interior control. Surface fullness is rarely adjustable, and for
more detailed modifications, the user needs to insert addi-
tional curves, thereby (i) making the design more complex,
(ii) increasing the number of patches, and (iii) harming over-
all surface quality, since continuity is normally only G1 or
G2 between (sub)patches.

Control of the interior poses a problem sometimes even
for control point based surfaces. The S-patch,6 for example,
has too many control points for interactive design, and while
these can be arranged automatically,8 it is not evident how
they can be used to modify the patch inside. Our previous
experience10, 13 shows, that concave or highly curved config-
urations are also notoriously difficult to handle.

Here we propose a general method for patch modification.
The idea is very simple: we want to allow the user to pick
any point on the surface, and move it in a way that preserves
continuity, and has a controllable region of influence. This
will be accomplished by adding a displacement surface to
the original patch, which vanishes at the boundaries. (Note
that the designer will be able to move one point at a time, and

subsequent edits modify the position of previously moved
points.)

After reviewing some alternatives in Section 2, we go
through the details of the construction in Section 3. A few
examples and remarks on future work conclude the paper.

2. Previous work

Some specific transfinite interpolation surfaces do have in-
terior control. Kato’s patch,4 for example, can easily be
extended to interpolate auxiliary objects, such as internal
points or curves, with adjustable range.12 Another example is
the midpoint patch,9 which has a single central control point
for fullness adjustments.

In the context of splines and subdivision surfaces, Kosinka
et al.5 propose an approach similar to ours, where control
vectors correspond to what we will call displacements .

We are not aware of any representation-independent
method, however, for controlling the surface interior. The
closest relatives are the mesh sculpting methods,1, 2 where
adaptive refinement is combined with decay functions to a
similar effect.

3. The displacement surface

Let us assume that the initial surface is discretized as a tri-
angular mesh with vertices vi, and we have an index set for
the boundary vertices, Ib, and another for the displacements,
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Id (assuming Ib∩ Id = ∅). Finally, for each displacement in-
dex j ∈ Id , we have a displacement vector d j .† The modified
surface is then described by the displaced vertices

v̂i = vi + ∑
j∈Id

d jB j(i), (1)

where B j(i) ∈ [0,1] is some kind of smooth blending func-
tion satisfying the following equations:

B j(i) =

{
0 for i ∈ Ib,

1 for i = j.
(2)

In addition, all derivatives of B j should vanish at the bound-
ary.

In the rest of this section, we will build up the blending
function part by part.

3.1. Vanishing at the boundaries

First we need a function that satisfies Eq. (2), i.e., it gives 1
at the footpoint ( j), and vanishes at the boundary. A simple
solution is the harmonic function H j with these boundary
constraints. It will only be C0 at the footpoint, and will not
satisfy the derivative constraints, but we will deal with those
later.

This function can be computed by using a discrete
Laplace operator,7 solving

L ·h = 0, (3)

subject to hi = 0 for i ∈ Ib and h j = 1, which can be fixed
using Lagrange multipliers. Here L is the symmetric matrix

Lkl =


−∑i 6=k Lki when k = l,
− 1

2 (cotαkl + cotβkl) when vk is adjacent to vl ,

0 otherwise.
(4)

The angles αkl and βkl are those opposite to the edge be-
tween vk and vl (or zero, at the boundary, where the angle
does not exist). H j(i) is then defined simply as hi.

3.2. C∞ continuity

The above function is not smooth at the footpoint, and
its derivatives do not vanish at the boundary. These prob-
lems can be solved by composing it with a C∞ blending
function—a monotonic function in [0,1] that satisfies

f (0) = 0, f (1) = 1, f (k)(0) = f (k)(1) = 0 (5)

for all k > 0.

† It is important to note, that the above is written in a discretized set-
ting only for the sake of generality, and it could also be equivalently
reformulated using parameters (for parametric surfaces), by associ-
ating displacements with fixed parameter values. In either way, the
construction itself remains continuous.

Figure 1: Comparison of C∞ blending functions.

There are a number of such functions, for example the
bump function

fBump(t) =
ψ(t)

ψ(t)+ψ(1− t)
, ψ(t) = exp

(
− 1

tk

)
, (6)

or the η function14

fη(t) =


0 0≤ t ≤ δ,

φ(1−t)
φ(t)+φ(1−t) δ < t < 1−δ,

1 1−δ≤ t ≤ 1,

(7)

where

φ(t) = exp
(

2exp
(
−1−2δ

t−δ

)
· 1−2δ

t +δ−1

)
. (8)

Here we use a simple expo-rational B-spline,3 which is
more computation-intensive, but has arguably better shape
than the alternatives (see Fig. 1). It is defined as

fERBS(t) =
ϕ(t)
ϕ(1)

, ϕ(t) =
∫ t

0
exp

−
(

s− 1
2

)2

s(1− s)

 ds.

(9)

3.3. Influence adjustment

Finally, we need to add some control over the range of the
displacement. For this, we use the reparameterization

R j(t) = 1− (1− t)1/(1−r j), (10)

where r j ∈ [0,1) is the range of the displacement d j. When
r j gets larger, an increasingly large neighborhood of the
footpoint is getting high blend function values, see Fig. 2.

The final blend is defined as

B j = fERBS ◦R j ◦H j. (11)

Figure 3 shows the sum of two blending functions with dif-
ferent ranges over a 5-sided polygonal domain.
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Figure 2: Reparameterization with various ranges.

Figure 3: Sum of two blends with ranges r1 = 0.7 (left) and
r2 = 0.25 (right) over a 5-sided polygonal domain.

4. Examples

In the following, we demonstrate some basic operations on a
six-sided transfinite surface. Due to its highly curved shape,
the interior becomes too flat. In the first example (Fig. 4),
we add a single control point to adjust the central region. The
displacement vector is very small here, with short range. The
mean curvature maps show a highly localized change.

In Figure 5, we added a new feature to the surface by plac-
ing two control points with medium range.

Finally, we show a change in fullness by adding several
control points of various ranges (Fig. 6).

Conclusion and future work

We have shown a simple and very general method for adding
interior control to any surface. With this approach, an arbi-

Figure 4: Adjusting the center with a single control point.

Figure 5: Adding a feature using two control points. The bot-
tom image shows the triangulation and the control positions
(in green).
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Figure 6: Changing the fullness (surfaces shown with con-
touring).

trary point of the surface can be repositioned while retaining
the original smoothness.

Forcing the surface to go through multiple fixed points,
or even an auxiliary curve or surface, may be achieved by
modifying the harmonic equation. The related equations and
a corresponding intuitive interface is the subject of future re-
search. Different reparameterizations are also possible: the
range of the displacement effect is currently controlled with
a single number, but it would be interesting to add a direc-
tional component for anisotropic effects.
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