
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

A Multi-sided Bézier Patch with a Simple Control Structure

Tamás Várady1 Péter Salvi1 György Karikó2

1 Budapest University of Technology and Economics
2 ShapEx Ltd.

Abstract
A new n-sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross-
derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal
domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted,
biparametric Bernstein functions. A method for interpolating a middle point is also presented.
This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi-sided patches as a combination
of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept.
The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points—
other than those specified by the user—are placed automatically by a special degree elevation algorithm.
GB patches connect to adjacent Bézier surfaces with G1 continuity. The control structure is simple and intuitive; the number
of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples;
suggestions for future work are also discussed.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

The mathematical formulation of multi-sided surfaces is an impor-
tant area in Computer Aided Geometric Design. There is a wide
variety of these patches due to several (often contradictory) require-
ments, and it is hard to find a single best representation. For exam-
ple, transfinite patches constrain only some boundaries and cross-
derivatives, then the patch interior is created solely from this infor-
mation. Control point-based patches provide multiple local controls
for the interior by means of a well-defined structure of 3D vectors.

The transfinite approach is helpful when we are satisfied with
the shape by the automatic settings, however, difficulties may arise
if the shape needs to be further modified or optimized in the in-
terior. Control point-based schemes are attractive when the num-
ber of control points is relatively low, however, if certain details
at the boundaries require the presence of too many control points,
it is hard to generate and manipulate these. Locality can be both
an advantage and a problem, depending on whether we want to
edit smaller or larger parts of the surface. Another aspect is how to
stitch together adjacent surfaces smoothly; here transfinite patches
may provide simpler solutions. The efficiency of numerical compu-
tations may also be a concern, and in this regard control point-based
surfaces seem to be superior to transfinite surfaces, and the list goes
on.

In this paper we propose a new control point-based surface rep-
resentation, called the GB patch, which generalizes tensor prod-
uct Bézier patches. It extends the mathematical elegance of Bézier
patches to an arbitrary number of sides, and allows the combina-
tion of Bézier boundaries of different degrees with related cross
derivatives. In some sense, we try to combine the advantages of the
transfinite schemes (e.g. [SVR14]) and conventional control point-
based approaches: basically the patch is constructed from boundary
information, and at the same time an interior structure of control
points is built up in an automatic manner. These control points may
be satisfactory as they are, but can also be modified, allowing for
interactive editing or shape optimization. The input Bézier ribbons
may have different degrees and complexity, but each can be edited
separately. The patch evolves naturally “behind the scenes”, and
smoothly blends together all information into a single entity. Inte-
rior control points are inserted when and where it is necessary.

Generalized Bézier patches are rational polynomials with C∞

continuity within the patch. There is no need for artificial in-
ternal subdividing structures between quadrilaterals, however—
according to our best knowledge—they cannot be directly con-
verted into a standard CAD format. These patches can be utilized in
various areas of CAGD: (i) Aesthetic design of complex free-form
objects is still a challenging task; this includes general topology
curve network-based design, as well. (ii) Hole filling is also an im-
portant problem in various modeling situations, in particular when
complex vertex blends are created. (iii) The approximation of 3D
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point clouds when points are located in an irregular, multi-sided
region, is also an interesting application.

This paper is structured as follows. After reviewing previous
work in Section 2, we discuss a new approach for creating multi-
sided patches that applies the displacement principle (Section 3).
We introduce the Generalized Bézier patch in Section 4 with its
parameterization, control structure, and blending functions. In Sec-
tion 5 the algorithm of combining Bézier surfaces of various de-
grees to constitute a single GB patch is discussed. This section
comprises the algorithms of degree reduction and elevation for GB
patches. The paper is concluded by a few examples (Section 6), in-
cluding the pros and cons of the scheme and suggestions for future
work.

2. Previous work

Multi-sided surfaces have been studied since the early 80s, see re-
lated reviews in [Mal98, VRS11] amongst others. An early control
point-based solution appeared in Sabin’s quadratic patch [Sab83],
and the cubic surface of Hosaka and Kimura [HK84]. These were
later generalized to arbitrary degrees by Zheng and Ball [ZB97]
using a control net structure similar to ours. Their parameterization
method depends on the number of sides; solutions for 3, 5 and 6-
sided patches are described in the paper. The sum of the blending
functions is set to 1 by compensating at the interior control points
(cf. weight deficiency in our solution, see Section 4.4). The individ-
ual weights are products of powers of distance parameters, which
yields an expression of much higher degree than the one proposed
in Section 4.3. A subsequent publication [Zhe01] generalized this
patch for non-twist-compatible configurations.

Another line of research started with the S-patch [LD89], where
the binomial coefficients of Bernstein polynomials were replaced
by multinomials, and the (u,v) quadrilateral domain was replaced
by a convex polygon with generalized barycentric coordinates.
While beautiful in theory, its practical use is somewhat limited due
to the high number of control points and the special, fairly com-
plex, multi-linked control structure. (For example, a 6-sided quintic
S-patch requires 222 internal control points disregarding the bound-
aries; our GB patch only 25.) To our best knowledge, these prob-
lems have not been addressed, though a recent paper on cage defor-
mation [SS15] proposes selective degree elevation for S-patches.

Warren [War92] introduced an interesting idea: multi-sided sur-
faces are created by “cutting off” edges of rational Bézier trian-
gles, using base points (points where all homogeneous coordinates
are 0). With this method, one can build patches of 3 to 6 sides
with a low number of control points, and the boundary curves can
have different degrees. C1 continuity to adjacent patches can also
be achieved, but this is not so straightforward, due to the special
control structure (cf. Section 4.6).

A recent publication [SZ15] explores conditions for G1 continu-
ity between toric surfaces. This is a new and interesting multi-sided
patch formulation, but the lattice structure of its control points is a
constraint that may limit its usefulness for e.g. 5-sided surfaces.

None of the above publications deals with the automatic place-
ment of control points. While this can arguably be done by mini-
mizing a suitable target function, there is a strong demand in design

applications to provide a default arrangement for the interior con-
trol points. Our solution for GB patches will be discussed in details
in Section 5.

Finally we should mention a special kind of n-sided patches, that
are created as a collection of rectangular patches with central split-
ting. The main issues are how to create and control good subdi-
viding boundaries, and how to ensure smooth connections between
the adjacent patches, in particular at the extraordinary center point.
We can list only a few from the many interesting publications. One
of the earliest was Gregory’s C1 bicubic solution [GZ94], followed
by various biquadratic, bicubic and biquartic surface splines with
G1 (e.g. [Pet94]), biseptic with G2 [LS08], and bisextic surfaces
with C2 continuity [Pra97]. A recent result in this area is a fair,
quasi-G2 continuous biquartic configuration proposed in [KNP15].

The basic advantage of these methods is that they stitch together
standard patches, but may not have high-degree continuity along
their seam lines, in contrast to genuine n-sided patches, such as
the GB patch. Another aspect is that the majority of these methods
approximate a control polyhedron, while our focus is to develop a
combined scheme that interpolates a prescribed set of curves and
offer additional interior control.

In the forthcoming sections we will discuss several features that
distinguish the proposed GB scheme from other approaches, such
as: simple control structure, ease of connecting multiple ribbons
with various degrees, intuitive method to automatically generate
interior control points (gaining further degrees of freedom), and
C∞ continuity in the interior of the patch.

3. The displacement approach

The majority of transfinite patch formulations for quadrilateral and
n-sided patches are based on the Boolean sum principle. Bicubic
Coons patches [Coo67] take two side-to-side interpolants and sub-
tract a correction term that interpolates the corner positions, tan-
gents, and twists. Gregory patches [Gre86] use corner interpolants,
where the sum of two adjacent boundaries and cross-derivatives is
compensated by correction terms. Generalized Coons patches, pro-
posed in [SVR14], are also composed by adding n side ribbons and
subtracting n corner correction terms to ensure interpolation along
the boundaries.

Here we propose an alternative, the displacement scheme. The
basic idea is that we define curves by separating the end constraints
(positions and first derivatives) from their middle parts. For sur-
faces we distinguish three parts: corner constraints (positions, tan-
gents and twists), side constraints (positions and cross-derivatives),
and a surface interior. We will use this approach for combining
Bézier surfaces using GB patches.

Any parametric curve can be written as r(u) = rB(u) + rD(u),
where rB(u) denotes the base curve, and rD(u) denotes the dis-
placement curve. We assume that rB(u) interpolates the end po-
sitions and end tangents, i.e., (assuming a parametric interval
of [0,1]) rB(0) = r(0), rB(1) = r(1), r′B(0) = r′(0), r′B(1) = r′(1).
Let us take a simple example, see Figure 1. A quartic Bézier curve
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Figure 1: Displacements (red: original quartic curve, green: cubic
curve, blue: cubic curve elevated to quartic).

is given as

r(u) =
4

∑
i=0

Q4
i B4

i (u), (1)

where Q4
i are its control points. The base curve rB(u) is a cubic

curve

rB(u) =
3

∑
i=0

C3
i B3

i (u), (2)

where C3
0 = Q4
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0 +
4
3 (Q

4
1−Q4

0), C3
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4 +
4
3 (Q
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3−Q4

4),
and C3
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After degree elevating rB(u), an identical curve of degree 4 is
obtained with control points C4

i . Clearly C4
i = Q4

i , except for i = 2;
where C4

2 = 1
2 (C

3
1 +C3

2) 6= Q4
2. We define the displacement vector

D4
2 between the middle control points as D4

2 = Q4
2−C4

2 , and thus
obtain a displacement curve rD(u) = D4

2B4
2(u). It can be seen that

rD(u) influences only the middle part of the curve and not the ends.

The same logic can be applied to n-sided surfaces, as well. Let
us compose our surface as the sum of a base patch, n displacement
patches and an interior patch:

S(u,v) = SB(u,v)+
n

∑
i=1

SDi(u,v)+SI(u,v). (3)

The base patch interpolates the corner data, the displacement
patches act only in the middle of the sides and vanish as we move
towards the corners. The interior patch determines the surface in
the middle and vanishes as we approach the sides and the corners.

While in the Boolean sum approach correction terms are sub-
tracted, in the displacement approach the sum of different surface
components are taken. By switching the individual components
“on” and “off”, local effects can be observed and analyzed.

4. The Generalized Bézier patch

A Generalized Bézier (GB) patch S(u,v) is generated by mapping
the (u,v) points of an n-sided convex polygonal domain Γ into 3D.
We can handle patches with an arbitrary number of sides (n ≥ 3).
The sides of the polygon Γi (i = 1 . . .n) are mapped to the bound-
aries of the patch; each boundary is a degree d Bézier curve. The
multi-sided control net, whose structure is determined by n and d,
is a straightforward extension of the control grid of quadrilateral
Bézier patches with degree d.

We associate certain rows of control points with individual sides
of the domain and introduce the number of control point layers
l = (d + 1)÷ 2. For example, Figure 4 shows a 5-sided, degree 4
control net where l = 2. Figure 5 shows a 5-sided, degree 5 control
net where l = 3. (From the above definition it follows that there
are always two patches with a given number of layers, with degree
d = 2l and d = 2l−1.)

First we introduce some elements of the GB scheme, including
control net, parameterization and weight deficient blending func-
tions, and then we will be able to formulate the surface equation.

4.1. Control nets

The concept of multi-sided control nets is depicted in Figure 2.
First let us consider a quadrilateral control grid. For even degrees
the grid consists of a central control point and four quadrants (black
frames in Fig. 2a). For odd degrees (see Fig. 2b) a conventional grid
consists of just the four quadrants. It is a peculiar feature of the GB
patch, that its control network contains a central control point (C0)
also for odd degrees. This structure can be generalized to n corners;
the number of control points will be proportional to n.

Comparing the above examples with the five-sided patches of
Figures 2c and 2d, we can see that in the quartic case, the 4-sided
patch has 4 ·6+1 = 25 control points, while the 5-sided GB patch
has 5 ·6+1 = 31 points. In the quintic case, a conventional 4-sided
patch (with no C0) has 4 · 9 = 36 control points, while the 5-sided
GB patch has 5 ·9+1 = 46 points.

In general, for even degrees (d = 2l), the number of control
points is n · l(l+1)+1 for both the conventional 4-sided and the n-
sided GB patches. For odd degrees (d = 2l−1), the number of con-
trol points is 4l2 for the conventional 4-sided patches, and n · l2 +1
for the n-sided GB patches.

4.2. Local coordinates and Bernstein blending functions

For each side of the polygonal domain we introduce local side
and distance parameters, denoted by si = si(u,v) and hi = hi(u,v),
see Figure 3. These parameters are computed using Wachspress
barycentric coordinates λi = λi(u,v), i = 1 . . .n. There are sev-
eral publications that thoroughly discuss the properties of gener-
alized barycentric coordinates, see for example [HF06]. It is well-
known that (i) λi ≥ 0 [positivity] and (ii) ∑λi = 1 [partition of
unity] hold for all points within a convex domain. Denote the
vertices of the polygon by Pi and take an arbitrary point (u,v).
Then (iii) (u,v) = ∑Piλi(u,v) [reproduction] holds, as well. Fi-
nally, for all vertices Pj, we have (iv) λi = δi j [Lagrange property],
where δi j is the Kronecker delta.

While generalized barycentric coordinates are associated with
the vertices of the polygon, the si and hi parameters of GB patches
are associated with the individual sides, inheriting important prop-
erties that we will use later.

Let us define the local parameters as

si =
λi

λi−1 +λi
, (4)

hi = 1−λi−1−λi. (5)
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(a) n = 4, d = 4 (b) n = 4, d = 5 (c) n = 5, d = 4 (d) n = 5, d = 5

Figure 2: Quadrants of quartic and quintic patches.
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Figure 3: Multi-sided domain and parameterization.

The side parameter si varies from 0 to 1 on side i; si = 0 on side i−
1, si = 1 on side i+1. For all other points, si takes values between
0 and 1. The distance parameter hi vanishes on side i, since this
is the only place where the sum λi−1 +λi equals to 1. It increases
linearly from 0 to 1 on sides i−1 and i+1. On the remaining sides
hi = 1. On side i the equations si = hi−1 and si = 1−hi+1 are also
satisfied.

Note: the above equation for si is undefined for points on the
“distant” sides Γ j, j /∈ {i− 1, i, i + 1}, however, there exists an
equivalent formula that resolves this problem. Introducing h⊥i−1 and
h⊥i+1 as the perpendicular distances from edges Γi−1 and Γi+1, we
have

si =
sin(θi)h⊥i−1

sin(θi)h⊥i−1 + sin(θi−1)h⊥i+1
, (6)

where θi denotes the angle at Pi.

We are going to use degree d biparametric Bernstein blending
functions of (si,hi) over the domain:

Bd
j,k(si,hi) =

(
d
j

)
(1− si)

d− js j
i ·

(
d
k

)
(1−hi)

d−khk
i . (7)

These Bernstein functions are defined in the same way as for the
quadrilateral domains with the difference that the “opposite” side
(where hi = 1) will be mapped to multiple sides of the domain
polygon.

4.3. Control points of the i-th side

The control points of the i-th side are denoted by Cd,i
j,k, 0 ≤ j ≤ d,

0≤ k < l. The “contribution” of the i-th side can be written as

Sd
i (si,hi) =

d

∑
j=0

l−1

∑
k=0

µi
j,kCd,i

j,kBd
j,k(si,hi). (8)

The µi
j,k-s are scalar multipliers that will ensure that the multi-

sided patch on side i is determined solely by its associated con-
trol points Cd,i

j,k. In other words, neither the adjacent, nor the distant
sides will have any effect on the i-th side.

It is important to notice that there are shared control points
around the corners that affect two adjacent sides. For example, take
the four control points (colored red) in Figure 4 that fall into both
the black and grey frames. These four control points determine the
position, the first derivatives and the mixed partial derivative (twist
vector) of the patch at the corner. (For simplicity’s sake we assume
twist compatibility in this paper.) Taking the bottom side as side i,
these control points occur both in the Sd

i (si,hi) and Sd
i+1(si+1,hi+1)

parts, being indexed in two different ways. For the i-th side we
have Cd,i

j,k, j ∈ {d−1,d}, k ∈ {0,1}; for the (i+1)-th side Cd,i+1
j,k ,

j,k ∈ {0,1}. This also means that in the final surface equation
the shared control points will actually be multiplied by a weighted
combination of Bernstein functions

µi
d−k, jB

d
d−k, j(si,hi)+µi+1

j,k Bd
j,k(si+1,hi+1), j,k ∈ {0,1}.

In Figure 4 a quartic patch is shown (l = 2) with quadruples of
shared control points. In Figure 5 a quintic patch is shown (l = 3),
where 3×3 control points are shared at each corner.

Let us return to assigning weights to the control points of the i-th
side. First take the quartic case in Figure 4. The four shared control
points at the left will be multiplied by a scalar function αi, and
those at the right by βi (see below). A weight of 1 will be assigned
to the control points in the middle. Formally, we define µi

j,k as

µi
j,k =

k<2


αi =

hi−1
hi−1+hi

j < 2,

1 2≤ j ≤ d−2,
βi =

hi+1
hi+1+hi

j > d−2.

(9)

This sets all µ-s to 1 on the i-th side, where hi = 0, thus producing
a constant 1 multiplier for the corresponding Bernstein functions.
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Figure 4: Control points of a patch with 2 layers (n = 5, d = 4).

Figure 5: Control points of a patch with 3 layers (n = 5, d = 5).

The method of assigning weights is more complicated when
l ≥ 3; an example is shown in Figure 5. All weights for k < 2 are
computed as before. When k ≥ 2, take the diagonal j = k on the
left side (where j < l). Weights of 1

2 will be assigned to the control
points on the diagonal, and zeros for all the control points above
this diagonal (where j < k). Taking the right side, another diago-
nal is defined by j = d− k; the weights are assigned in a similar
manner as before. All the remaining weights of the control points
between the two diagonals belong exclusively to the i-th side and
will have a weight of 1. We can formally define the k ≥ 2 case as
follows:

µi
j,k =

j<l


0 j < k,
1
2 j = k,
1 j > k,

µi
j,k =

j≥l


0 j > d− k,
1
2 j = d− k,
1 j < d− k.

(10)

4.4. Weight deficiency

For affine invariance the sum of the blending functions must be 1.
In the case of GB patches, we introduce a central control point that
is multiplied by a central blending function Bd

0(u,v), that is equal
to the weight deficiency of the blending functions assigned to the

other control points:

Bd
0(u,v) = 1−

n

∑
i=1

d

∑
j=0

l−1

∑
k=0

µi
j,kBd

j,k(si(u,v),hi(u,v)). (11)

We have found that setting the default center point to the average
of the n innermost control points is a natural choice:

C0 =
1
n

n

∑
i=1

Cd,i
l,l−1. (12)

With this we can define an interior surface using the central control
point as

Sd
0(u,v) =C0Bd

0(u,v). (13)

The central control point is useful for moving the middle point of
the GB patch to an arbitrary location, as we will see in Section 5.3.

4.5. The patch equation

Now we are ready to formulate the equation of the GB patch. Using
Equations (8) and (13):

Sd(u,v) =
n

∑
i=1

Sd
i (si(u,v),hi(u,v))+Sd

0(u,v). (14)

The GB patch is a convex combination of a net of control points,
similarly to the tensor product Bézier patches. As shown in Fig-
ure 6, the control points can be classified by their location within
the structure. Control points around the vertices (red) are to repro-
duce the positional and tangential constraints at the corners; these
are multiplied by a rational combination of two biparametric Bern-
stein functions. Control points between these quadruples (green)
are to reproduce boundaries and cross-derivatives; control points
in the interior (yellow) are to produce a smooth blend between the
boundaries and the interior. The latter groups of control points are
multiplied by ordinary biparametric Bernstein functions. Finally,
the central control point (blue) is to adjust the interior of the GB
patch, and is multiplied by a special blend, the weight deficiency.

In the next subsection we will investigate how GB patches can be
connected to adjacent tensor product Bézier surfaces or other GB
patches with G1 continuity.

4.6. Bézier ribbons and cross-derivatives

Let us take the first two rows of control points that belong to side i:
Cd,i

j,k, k < 2. Using ordinary biparametric Bernstein functions, these

define a Bézier ribbon, that determines a boundary curve rd
i and a

first cross-derivative td
i along the side parameter si:

rd
i (si) =

d

∑
j=0

Cd,i
j,0Bd

j,0(si,0), (15)

td
i (si) =

d

∑
j=0

d(Cd,i
j,1−Cd,i

j,0)B
d
j,0(si,0). (16)

Let us take the same set of control points and apply the local pa-
rameterization and the weighted Bernstein functions of GB patches.
We will show that S(u,v) and S′(u,v) reproduces the boundary and
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the cross-derivative along Γi. In this section x′ denotes a directional
derivative of x by an arbitrary direction in the (u,v) domain. Our
proof consists of three parts. First we show that Si(u,v) does not
affect the distant sides Γ j, j /∈ {i−1, i, i+1}, neither in positional
nor in differential sense. Then we show how Si(u,v) affects the
adjacent sides Γ j, j ∈ {i− 1, i+ 1}. Finally we show that Si(u,v)
reproduces the prescribed boundary functions. For this proof, it is
sufficient to investigate the properties of the weighted Bernstein

functions µi
j,kBd

j,k(si,hi) and their derivatives
(

µi
j,kBd

j,k(si,hi)
)′

in
the first two rows (k < 2).

(i) The contribution of Γi does not affect the distant sides, since
the weighted Bernstein functions and their derivatives vanish. This
holds, because by definition hi equals 1 there, and all related blend-
ing functions contain a (1−hi)

2 term.

(ii) Take the positional contributions of Γi to the adjacent side
Γi−1. (For Γi+1 we proceed in the same way.) The weighted Bern-
stein functions vanish, since (a) for j < 2 the multiplier µi

j,k = 0
due to hi−1 = 0, (b) the remaining Bernstein functions with j ≥ 2
contain at least one si term, but si = 0 on side Γi−1.

Next look at the derivatives of the weighted Bernstein functions
of Γi on Γi−1. Those with indices j ≥ 2 have obviously no effect
on Γi−1, as they contain at least one si term, and si = 0. But for
j < 2 the derivatives do contribute to Γi−1:(

hi−1
hi−1 +hi

Bd
j,k

)′
=

h′i−1
hi

Bd
j,k(si,hi). (17)

Similarly, the contribution to the other side (Γi+1) is(
hi+1

hi+1 +hi
Bd

j,k

)′
=

h′i+1
hi

Bd
j,k(si,hi). (18)

(iii) The related boundary curve will be reproduced positionally
on Γi, since the ordinary and weighted Bernstein functions become
identical. For 2≤ j ≤ d−2 all µi

j,k-s are constant 1; for the corner
terms, where j < 2 or j > d−2 the µi

j,k-s are also equal to 1, since
hi = 0, see Eq. (9).

In order to show the reproduction of the cross-derivative func-
tion, we need to show that the derivatives of the weighted Bernstein
functions are identical to those of the ordinary Bernstein functions.
We will take into consideration the differential terms from the Γi−1
and Γi+1 sides. First take the left corner, where(

hi−1
hi−1 +hi

Bd
j,k

)′
= Bd

j,k(si,hi)
′− h′i

hi−1
Bd

j,k(si,hi), (19)

while the contribution from the (i−1)-th side is

h′i
hi−1

Bd
d−k, j(si−1,hi−1), (20)

as can be seen by shifting the indices of Eq. (18). When hi = 0,
all coefficients vanish except for Bd

j,0(si,hi) and Bd
d, j(si−1,hi−1).

Fortunately hi = 1− si−1 = 0 and si = hi−1 on the i-th boundary,
consequently

Bd
j,0(si,hi) = Bd

d, j(si−1,hi−1), j < 2. (21)

This means that the contribution from Γi−1 cancels the second term

of Eq. (19), and only Bd
j,k(si,hi)

′ remains, this is exactly what we
wanted to prove. The same cancellation takes place at the other
corner due to the contribution from side Γi+1.

To sum it up, we have shown that the weighted Bernstein func-
tions of S(u,v) are identical to the ordinary Bernstein functions on
Γi along the boundary, i.e., the GB patch behaves as an ordinary
Bézier patch having the same two rows of control points. Thus
GB patches can be inserted into patchworks of quadrilateral Bézier
patches, and they can be smoothly connected to other multi-sided
GB patches.

5. Control network generation

In this section we will discuss how Generalized Bézier patches can
be used to interpolate and nicely blend Bézier ribbons of different
degrees into a single multi-sided patch. We will show how the in-
dividual ribbons can be degree elevated preserving the boundary
constraints, and how new control points can be inserted in the inte-
rior to complete the patch. These algorithms generalize the degree
reduction and elevation algorithms of Bézier curves.

5.1. Degree elevation and reduction

The algorithm to degree elevate Bézier curves is well-known. Take
a degree d control polygon with control points Cd

i , i = 0 . . .d. Keep
the end control points Cd+1

0 = Cd
0 and Cd+1

d+1 = Cd
d , and create new

interior control points on each chord of the polygon by linear inter-
polation: Cd+1

i = ηiCd
i−1+(1−ηi)Cd

i , where ηi =
i

d+1, , i = 1 . . .d.
The new curve will be a convex combination of control points using
the Bd+1

i Bernstein functions.

Concerning the degree reduction of Bézier curves there are dif-
ferent possibilities. Our preference is to perform an “inverse” de-
gree elevation. In the elevation process, we have d equations to de-
termine d unknowns, while in reduction we use the same equations
to determine the unknown internal control points Cd

i , i = 1 . . .d−1
from the given Cd+1

i -s, but here we have one more equation than
needed. Using index i upwards from 1, and j downwards from d
we obtain the following pairs of equations:

Cd
i =

Cd+1
i −ηiCd

i−1
1−ηi

, 1≤ i≤ k, (22)

Cd
j−1 =

Cd+1
j − (1−η j)Cd

j

η j
, d− k+1≤ j ≤ d, (23)

where k = d÷2. We have 2k equations and d−1 unknowns, so for
d = 2k+ 1 these are sufficient to determine all the interior control
points, but for d = 2k we obtain two different expressions for Cd

k ,
and their average needs to be taken.

Degree elevation is trivial for quadrilateral Bézier patches and
relatively easy for GB patches, as well, generalizing the above al-
gorithm. We retain the corner control points, and degree elevate
the boundaries by inserting new control points to each chord of the
perimeter control polygons; then for each quadrilateral of the con-
trol net we insert a new control point by linear interpolation. For
the GB patches it is essential that the central control point can also
act as a corner of a quadrilateral, so it does influence the degree
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Figure 6: Degree elevation from quartic to quintic—blue lines show
the original control net. Control points are colored by classification
(see Section 4.5).

elevation process. This is illustrated in Figure 6, where a quintic
control net was created from a quartic.

Degree elevation for GB patches basically proceeds as for
quadrilateral patches. Assume we have a patch with l layers, then

Cd+1,i
j,k = η jϑkCd,i

j−1,k−1 +(1−η j)ϑkCd,i
j,k−1 +

η j(1−ϑk)C
d,i
j−1,k +(1−η j)(1−ϑk)C

d,i
j,k, (24)

where η j =
j

d+1, , ϑk =
k

d+1, , 1≤ j ≤ l, 1≤ k ≤ d÷2.

There are two options for setting the central control point Cd+1
0 :

either we compute the default central point, as was proposed in
Equation (12), or we compute Cd+1

0 in such a way, that the middle
surface point stays the same. Details of the latter approach can be
found in Section 5.3. We are going to use the following notation for

the degree elevation operation: Sd+1(u,v) =
[
Sd(u,v)

]↑
.

It must be emphasized that degree elevation does not produce
an identical GB surface, as in the case of tensor product Bézier
patches. The above procedure creates an elevated network, but the
weights of the control points are computed as it was described in
Section 4.3. The boundaries and cross-derivatives are preserved,
of course, but the interior of the elevated patch only approximates
the original patch. This is due to the different blending functions
and the different weight deficiencies. Figure 7a shows a 6-sided
quintic patch, and Figure 7b shows its degree elevated version with
a superimposed deviation map. There are minor differences, even
when the middle point of the surfaces are kept identical.

Degree reduction for GB patches is also fairly straightforward,
based on the related curve algorithm, so we do not go into details,

just introduce a notation: Sd(u,v) =
[
Sd+1(u,v)

]↓
.

5.2. Creating a GB patch from Bézier ribbons

The input is a collection of Bézier ribbons with different degrees,
denoted by di, i = 1 . . .n, see for example Figure 8a. We are going
to create a GB patch of degree dmax = max(di), that interpolates
and smoothly connects these ribbons. The patch will have a well-
defined net of internal control points, along with a central control

(a) Original quintic patch

(b) Sextic patch with deviation

Figure 7: Deviations after elevation.

point. All control points can be used for editing or optimization.
The algorithm is split into three phases.

(i) In the first phase we reduce the degrees of the individual rib-
bons step by step from di to 3. Using our former notations, the
control points of the i-th ribbon are Cdi,i

j,k , j = 0 . . .di, k < 2. After

the first degree reduction we obtain Cdi−1,i
j,k , j = 0 . . .di−1, k < 2;

then at the end C3,i
j,k, j = 0 . . .3, k < 2. (Intermediate control points

are stored for later use.)

(ii) We create a base patch S3(u,v), defined by n quadruples of
control points, associated with the corners. We assume that the rib-
bons are compatible, i.e., although their degrees may be different,
they must define the same position, tangents and twist vectors at
the corners. Consequently, after the degree reduction phase is com-
pleted, a consistent cubic control net with cubic boundaries and
cross-derivatives is obtained. We set the central control point C3

0
(see Section 5.3) and start to build the network bottom up.

(iii) We perform degree elevations step by step for each side and
create intermediate surfaces Md(u,v). First we compute M4(u,v) =[
S3(u,v)

]↑
; the degree elevated control points of the i-th ribbon are

denoted by Q4,i
j,k. Then we compute the displacement vectors for all

ribbons whose degree was at least 4. These vectors will compensate
the corresponding control points of the current intermediate surface
to reproduce all degree 4 ribbons, or partly reproduce ribbons with
degrees greater then 4. Finally we compute the degree 4 interior
control points.

In general, we repeat this step several times: intermediate sur-
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(a) Input Bézier ribbons (b) Reduced to cubic (base patch) (c) Elevated to quartic (d) Elevated to quintic (final patch)

Figure 8: Evolution of a GB patch.

(a) Initial configuration (b) Moving control points (c) Moving the surface center

Figure 9: Editing a GB patch.

faces are computed as Md(u,v) =
[
Sd−1(u,v)

]↑
, then displace-

ment corrections are made where Cd,i
j,k exists and the difference

vectors Cd,i
j,k−Qd,i

j,k, j = 2 . . .di, k < 2 are not zero. Obviously, we
never tweak the default quadruples at the corners, since they are al-
ways properly set. Then we define Cd

0 , and this completes the patch
Sd(u,v). After repeated degree elevations the process terminates at
the highest degree dmax.

The evolution of the GB patch is demonstrated by a simple ex-
ample in Figure 8. Figure 8a shows a patch with five ribbons with
degrees 3, 4, 5, 5, and 3, respectively, starting at the bottom edge
and going in CCW direction. After degree reductions we obtain the
base patch with boundaries reduced to cubic (Figure 8b). The first
degree elevation retains the shape of ribbons 1 and 5, reproduces
the quartic ribbon 2, and modifies ribbons 3 and 4 (Figure 8c). The
second degree elevation retains the shape of ribbons 1, 2 and 5, and
reproduces the quintic ribbons 3 and 4. Figure 8d shows the final
quintic patch with its automatically inserted interior control points,
which ensure a natural blending to connect the input ribbons.

5.3. Computing the central control point

An alternative method for computing the central control point C0
allows one to specify a 3D point P0 to be interpolated by the middle
point of the surface. Let (u0,v0) denote the center of the domain
polygon, then we want to set Sd(u0,v0) = P0. Using Equations (13)

and (14) we can reformulate this as
n

∑
i=1

Sd
i (si(u0,v0),hi(u0,v0))+C0Bd

0(u0,v0) = P0, (25)

from which we can compute C0 as

C0 =
P0−∑

n
i=1 Sd

i (si(u0,v0),hi(u0,v0))

Bd
0(u0,v0)

. (26)

6. Evaluation

In this section we will present a few examples and discuss the
strengths and weaknesses of the GB patch.

6.1. Example 1

The control points of GB patches can be manually edited or op-
timized as in standard control point-based formulations. Figure 9a
shows the curvature map of a 5-sided patch, whose control points—
both in the interior and along the boundaries—have been modified;
see Figure 9b. (Computing derivatives in the interior is possible, but
quite complex, and thus the curvature maps here were computed us-
ing a dense triangular mesh.) The user may want to explicitly set
the middle surface point to adjust the fullness of the shape. Then
degree elevation will proceed accordingly, and in each phase an ap-
propriate central control point will be set to satisfy this additional
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(a) Control points (b) Contouring (c) Gaussian curvature (d) Isophote lines

Figure 10: A setback vertex blend.

Figure 11: The dolphin model.

constraint. The result is shown in Figure 9c, where the first two lay-
ers of the control points are the same as before, but the interior and
central control points are relocated to force the surface to interpo-
late the small red cubical marker in the middle.

6.2. Example 2

GB patches are well-suited for creating vertex blends. For exam-
ple, Figure 10 shows a 6-sided setback-type vertex blend, which
connects three edge blends with different radii. The boundary con-
straints are determined by the surrounding primary and fillet sur-
faces, and the fullness of the patch is also optimized by means of
the interior control points.

6.3. Example 3

GB patches can be used to fill up general topology curve networks.
The degree of the ribbons associated with the edges of the network
may be different, but for smooth surfaces it is necessary that the
twist vectors should be compatible at the corners and G1 continu-
ity is ensured between the ribbons sharing the same edge. Then the
GB patches will automatically provide G1 transitions, as well. A
dolphin model is shown in Figures 11–13. It consists of 12 curves
that define eighteen faces: eight 3-sided, four 4-sided, four 5-sided
and two 6-sided surface patches. Some close-up pictures show the
top-left 6-sided patch with its ribbons (12a), full control-net (12b)
and isophotes (12c). Another close-up sequence shows six patches
together with ribbons (13a), mean curvature map (13b) and slic-
ing (13c).

6.4. Example 4

The woman head in Figure 14 is a fairly complex surface model
with many details, including the eyes, the nose and the ears. Alto-
gether there are 117 curves that define 105 patches. Besides several
6-sided and 3-sided patches, the important large areas are domi-
nantly covered by 4-sided and 5-sided patches. This model was
created as a collection of Generalized Bézier patches; a 5-sided
patch—with its control-net—is shown in the middle.

6.5. Advantages/limitations and future work

The simplicity of the control structure is an attractive feature of
GB patches. Control points can be defined by means of external
layers, then the proposed method fills up the internal control points
in a fair and predictable manner, and these can be further edited, as
well. The setting of the central control point is not an obvious issue.
Our proposed default setting (see Section 4.4) is one possibility, but
alternative solutions may also exist.

The GB patch inherits important properties of ordinary Bézier
patches, including affine invariance (see notes below), convex hull
property, linear reproduction and localized effect of editing. Our
high-resolution numerical tests (n = 4 . . .12, d = 3 . . .12) meet the
expectations that weight deficiency is always positive. Unfortu-
nately, at this point we have no algebraic proof, and this is sub-
ject of future research. It must be noted, that for n = 3 the classical
barycentric coordinates produce negative weight deficiency; nev-
ertheless, 3-sided patches work nicely—see the examples. In this
case, the middle control point is supposed to be set either by the de-
fault algorithm (Section 4.4) or by interpolating a prescribed mid-
dle surface point (Section 5.3). In order to ensure positive weight
deficiency for triangular surfaces, our recommendation is a simple
reparametrization of the distance coordinates, similarly to the one
suggested in [SVR14].

The GB patch can be used with linear and quadratic boundaries,
as well. In these cases there is only a single layer of control points,
so C0 continuity is guaranteed, and the scheme remains valid.

The extension of the GB scheme to higher degree ribbons and
G2 continuity, and the use of incompatible twists are subject of
ongoing research; results are encouraging.

For the majority of practical applications it is sufficient that the
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(a) Ribbons (b) Control points (c) Isophotes

Figure 12: Close-up of a 6-sided patch.

(a) Ribbons (b) Mean curvature (c) Slicing

Figure 13: Close-up of connected patches.

Figure 14: The face model.

GB patch intuitively interpolates the ribbons and produces a pre-
dictable middle surface point, but from a mathematical point of
view it is a deficiency that this sort of degree elevation cannot re-
produce the original degree d−1 patch. Our experiments show that
good approximations by manual editing are possible; still, this is
expected to be solved by an optimization algorithm. It is an open
question whether a scheme with perfect degree elevation exists.

The GB scheme, as all control point based schemes, is suitable
for fairing by minimizing various smoothness functionals, tweak-
ing primarily the control points in the interior. Other sorts of opti-
mizations are also possible, including the approximation of given
point sets while the boundaries are constrained. These algorithms
are subject of future research, as well.

Conclusion

A new multi-sided surface scheme has been proposed that general-
izes tensor product Bézier patches, based on the displacement prin-
ciple. The control net seems to be the simplest extension of con-
ventional quadrilateral grids. GB patches combine Bézier ribbons
with different degrees, and build up a uniform structure with auto-
matically produced interior control points. This is accomplished by
special degree elevation and degree reduction algorithms. There ex-
ists an extra degree of freedom to set the middle point of the patch,
if needed.

GB patches use rationally weighted biparametric Bernstein func-
tions; this explains why the most important properties of tensor
product Bézier patches remain valid. The patches have internal C∞

continuity, it is easy to evaluate them and are well-suited for a
GPU implementation. GB patches are expected to be used in vari-
ous computer graphics and CAD applications including interactive
general topology curve network-based design, hole filling, reverse
engineering and surface approximation. There are lots of challeng-
ing open issues for future research.
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