
The Visual Computer manuscript No.
(will be inserted by the editor)

εκ-curves: Controlled Local Curvature Extrema

Kenjiro T. Miura · R.U. Gobithaasan · Péter Salvi · Dan Wang ·
Tadatoshi Sekine · Shin Usuki · Jun-ichi Inoguchi · Kenji Kajiwara

Revised: January 30, 2021

Abstract The κ-curve is a recently published inter-

polating spline which consists of quadratic Bézier seg-

ments passing through input points at the loci of local

curvature extrema. We extend this representation to

control the magnitudes of local maximum curvature in

a new scheme called extended- or εκ-curves.

κ-curves have been implemented as the curvature

tool in Adobe Illustrator® and Photoshop®, and are

highly valued by professional designers. However, be-

cause of the limited degrees of freedom of quadratic

Bézier curves, it provides no control over the curvature

distribution.

We propose new methods that enable the modifica-

tion of local curvature at the interpolation points by

degree elevation of the Bernstein basis as well as appli-

cation of generalized trigonometric basis functions. By

using εκ-curves, designers acquire much more ability to

produce a variety of expressions, as illustrated by our

examples.

K. T. Miura
Shizuoka University

R. U. Gobithaasan
University Malaysia Terengganu

Péter Salvi
Budapest University of Technology and Economics

Dan Wang
Shizuoka University

Tadatoshi Sekine
Shizuoka University

Shin Usuki
Shizuoka University

Jun-ichi Inoguchi
University of Tsukuba

Kenji Kajiwara
Kyushu University

Keywords Interpolatory curves · Curvature con-

tinuity · Control of curvature magnitude · Degree

elevation

1 Introduction

The κ-curve, proposed recently by [27], is an interpo-

lating spline which is curvature-continuous almost ev-

erywhere and passes through input points at the lo-

cal curvature extrema. It has been implemented as the

curvature tool in Adobe Illustrator® and Photoshop®

and is accepted as a favored curve design tool by many

designers (see e.g. [4,6]).

We consider the reasons for the success of κ-curve

to be:

1. Information along contours is concentrated at local

maxima of curvature.

2. Curves of low degree have smooth distribution of

curvature.

3. G2-continuous curves tend to look fairer than only

G1-continuous ones.

Attneave [1] suggested, based on his empirical study,

that information along contours is concentrated in re-

gions of high magnitude of curvature, as opposed to

being distributed uniformly along the contour, and it

is further concentrated at local maxima of curvature

(see also [32]). Although Attneave never published the

details of his methods, [19] conducted a similar ex-

periment, and obtained the same results. Levien and

Séquin [11] argue similarly, and assert that points of

maximal curvature are salient features.

The curvature of a polynomial curve is given by a

relatively complicated rational function [7], and its dis-

tribution might not be globally smooth. However, if the

2 Kenjiro T. Miura et al.

(a=2/3) a=0.7 a=0.8 (a=2/3)a=0.95

Fig. 1: The left- and rightmost curves are κ-curves; the others are εκ-curves with gradual changes in the global

shape parameter a. The face part (for a = 0.95 and a = 2/3) is zoomed in for better comparison. When a=2/3,

κ- and εκ-curves are identical.

curve is of a low degree, the curvature distribution is

more uniform and the curve is fairer, thus more suitable

for illustration. The quadratic polynomial curve has the

nice property that its curvature has only one local max-

imum, and its location is easily computable [27], which

makes the handling of curvature extrema much easier.

Graphic designers often acceptG1 continuity as good

enough for illustration. However, discontinuity remains;

for example, if you join a straight line and a circular arc

with G1 continuity, the rhythm of the curve will be bro-

ken at the joint. For this reason we give pereference to

G2-continuous curves.

Nonetheless, κ-curves are not perfect, and their fur-

ther investigation is necessary [28]. The following are

two important shortcomings of κ-curves:

1. They are not curvature-continuous everywhere: at

inflection points only G1 continuity is guaranteed.

2. Since the degree of freedom (DoF) of the quadratic

segments is limited, it is impossible to control the

magnitudes of local maximum curvature at the in-

put points.

For the first shortcoming, Wang et al. [25] provided

a solution through the use of log-aesthetic curves [14,

16] instead of polynomial curves. Log-aesthetic curves

have a shape parameter (α), which can be utilised to

control the curvature distribution as shown in Figure 2.

Their method guarantees G2 continuity everywhere, in-

cluding inflection points, since log-aesthetic curves with

negative α values can represent S-shaped curves with

G2 continuity (note that these cannot be represented

by quadratic Bézier curves).

These curves, however, are defined by a Cesàro equa-

tion, and thus take extra time to evaluate, making the

interpolation method impractical for real-time design

purposes.

Because of the second shortcoming, if the designer

wants to increase or decrease the magnitude of the cur-

vature extremum, she needs to add extra input points,

as shown in Fig. 3. Yan et al. [26] proposed a piece-

wise rational, quadratic, interpolatory curve that is able

to reproduce circles and other elliptical or hyperbolic

shapes. Although their main intention was to reproduce

circles, their method could also control the magnitude

of local maximum curvature. However, only rational

quadratic curves are applicable, and it is not possible

to extend their method for other types.

a=-0.1 a=-1 a=-2.5

Fig. 2: Log-aesthetic curves with various α values [25].

Input points are depicted by black boxes and green

points correspond to positions of local maximum curva-

ture. The blue curves show the normal curvature. These

curves are G2-continuous everywhere.

(a) (b) (c)

Fig. 3: Addition of extra input points to control the

magnitude of curvature extrema: (b) is the original κ-

curve, (a) and (c) shows deformed curves with large

and small curvature extrema by adding two extra input

points.

In this paper we propose a new method to solve the

second shortcoming by degree elevation of the Bernstein

basis functions, giving an extra DoF to each quadratic

εκ-curves: Controlled Local Curvature Extrema 3

curve segment, providing control over the magnitudes

of local maximum curvature at input points. In order to

increase the designers’ possible choices, we also intro-

duce a new trigonometric basis for which we can per-

form degree elevation. In addition, we propose a gen-

eral method for bases with extra shape parameters. By

adding one more parameter to each of the curve seg-

ments, the designers obtain more expressive power for

their illustration. The family of this new curve is de-

noted as εκ-curves.

εκ-curves preserve all of the appealing properties of

κ-curves, i.e., point interpolation, G2 continuity (except

at inflection points), continuous modification (changes

smoothly when the input points move), local influence,

and real-time generation. With a small processing over-

head, εκ-curves offer the ability to control the magni-

tude of local maximum curvature.

We have implemented εκ-curves in MATLAB® and

Julia [10]. The source of the Julia code is available on-

line [21].

The rest of this paper is organized as follows. Sec-

tion 2 reviews the related work. Section 3 presents a

method to control the magnitudes of local maximum

curvature by degree elevation of the Bernstein basis

functions. Section 4 introduces a new trigonometric ba-

sis and proposes a method with degree elevation similar

to the one proposed in the previous section. Finally, we

end with conclusions and discussion of future work.

2 Related Work

In this section, we first review [27] and their underlying

strategy developing κ-curves. Next, we discuss related

researches on various kinds of basis function formula-

tions for curve design.

2.1 κ-curve

The basic framework of our method is adopted from [27],

generating curves controlled by interpolation points. κ-

curves have stimulated the field of interpolatory curve

generation, resulting in works such as [5], which pro-

poses a method for good control over the location and

type of geometric feature points (e.g. cusps and loops).

Yan et al. [27] create a sequence of quadratic curves

with G2 continuity almost everywhere. They derived

explicit formulae for the point between two quadratic

segments to guarantee G2 continuity, and for the ad-

ditional condition that input points should be interpo-

lated at maximum curvature magnitude positions. κ-

curves are determined by the locations of the middle

control points of quadratic Bézier segments – the rest

is easily derived from the continuity constraints. Hence

the variables are the locations of these middle control

points.

Their basic strategy to determine these locations is

to adopt a local/global approach [12,22]: G2-continuous

connection is performed locally, while the interpola-

tion at maximum curvature magnitude positions is done

globally.

Regarding control of the magnitude of local cur-

vature, the most common technique is to change the

weight of a control point of a rational curve [7]. A larger

weight attracts the curve to its control point, which

makes local curvature larger. However, this technique is

not applicable for interpolatory curves. Another tech-

nique is to introduce extra parameters called bias and

tension to the B-spline formulation for controlling local

curvature [2], but this is also not applicable to interpo-

latory curves.

2.2 Basis Functions

As mentioned in [27], curve modeling has a long history,

especially in computer-aided geometric design, as well

as computer graphics. In CAGD and applied mathe-

matics, to extend the expressive power of curves, many

researchers have been trying to develop new bases with

extra shape parameters. The following is a (nonexhaus-

tive) list of such bases:

1. C-Bézier curve [30]

2. Cubic alternative curve [9]

3. Cubic trigonometric Bézier curve (T-Bézier basis) [8]

4. αβ-Bernstein-like basis [31]

5. Quasi-cubic trigonometric Bernstein basis [29]

6. Trigonometric cubic Bernstein-like basis [23]

Our method proposed in the next section can be applied

for curves based not only on polynomials, but also other

bases such as a trigonometric basis with degree eleva-

tion property which we will introduce in Section 4. All

of the representations listed above have extra param-

eters for shape control, and we can utilize these pa-

rameters to control the magnitudes of local maximum

curvature (not all curve types are applicable, however,

as explained in Appendix C).

It is interesting to note that most researchers to

date have attempted to develop new bases using four

control points, based on cubic polynomials or quadratic

trigonometric functions. They prefer using four control

points out of concern for connections at both ends of the

curve. In order to control the magnitude of curvature at

the two ends independently, at least two control points

are necessary at each end. This differs fundamentally

4 Kenjiro T. Miura et al.

from Yan et al.’s (and our) approach, which uses only

three control points.

The importance of [27] is their proposed paradigm

shift for curve generation, by considering the local max-

imum curvature in the middle, instead of focusing on

the endpoints. If we can assume that the curvature has

just one local maximum in each segment, then only one

extra parameter per segment is adequate to control the

magnitude of its local maximum curvature.

To our best knowledge, no trigonometric basis fam-

ily for arbitrary degree has been published yet. Our

novel generalized trigonometric basis functions range

from linear, using three control points, to any higher

degree n, using 2n+ 1 control points. The curve can be

evaluated by a recursive method, similar to de Castel-

jau’s algorithm, as explained in Appendix B. Since the

curve uses trigonometric functions as blending func-

tions, it can represent a circular arc exactly, without

using a rational form.

3 Cubic Bernstein Polynomials

In this section we extend κ-curves in a direct manner,

by elevating the degree of quadratic Bézier segments

to cubic. εκ-curves retain the following properties of

κ-curves:

1. Interpolate all input points (control points).

2. All local maximum curvature points are the same

as the input points.

3. G2 continuity is guaranteed almost everywhere (ex-

cept for inflection points).

In the following we discuss only closed curves, but it is

straightforward to extend our methods to open curves

as has been demonstrated for κ-curves.

If we elevate the degree of a planar Bézier curve, we

obtain an additional control point, which has two DoFs

(the x and y coordinates). To reduce these to one, we

add a geometric constraint on the location of the sec-

ond and third control points of the cubic Bézier curve,

as shown in Figure 4. Here a is an internal division ra-

tio, where the larger a is, the closer the control points

P1 and P2 are to the control point Q1. We make the

restriction 2/3 ≤ a < 1 because the curve should not

have a complicated curvature distribution. Using Qi,

the curve C(t; a) is expressed by

C(t; a) = (1− t)3Q0 + 3(1− t)2t [(1− a)Q0 + aQ1]

+ 3(1− t)t2 [aQ1 + (1− a)Q2] + t3Q2. (1)

Note that if a = 2/3, the curve degenerates to quadratic.

a:
1
-a

P
0
=Q

0

Q
1

P
3
=Q

2

1
-a
:a

P
1
P
2

Fig. 4: Constrained cubic Bézier curve. If a = 2/3, the

curve becomes quadratic.

We have proved that by constraining the construc-

tion of the cubic polynomial curve as in Eq. (1), using

only three control points instead of four, the curvature

in one curve segment has at most one local maximum

for 2/3 ≤ a < 1; see details in [15], as well as Ap-

pendix A for a general discussion on the curvature ex-

trema of cubic polynomial curves, and a high-level sum-

mary of the proof. Hence we can safely assume that the

curvature in one curve segment has at most one lo-

cal maximum, and a single extra parameter for each

segment is enough to control the magnitudes of local

maximum curvature.

3.1 Geometric Constraints

We assume that εκ-curves consist of a sequence of con-

strained cubic polynomial curves

ci(t; ai) = (1− t)3ci,0 + 3(1− t)2t [(1− ai)ci,0 + aici,1]

+ 3(1− t)t2 [aici,1 + (1− ai)ci,2] + t3ci,2, (2)

parameterized by t and also ai, which is an extra shape

parameter. The control points are given by ci,0, ci,1 and

ci,2 ∈ R2, corresponding to Qi, i = 0, 1, 2 in Figure 4.

The ai’s are reserved for designers and can be manipu-

lated independently.

The curvature of this curve ci(t; ai) is given by

κi(t; ai) = det

(
∂ci(t; ai)

∂t
,
∂2ci(t; ai)

∂t2

) / ∥∥∥∥∂ ci(t; ai)∂t

∥∥∥∥3
=

4

3
·
4(ci,0, ci,1, ci,2) [a2i (1− t)t+ ai(1− ai) ((1− t)2 + t2)]

‖(1− t)2airi + 2(1− t)t(1− ai)(ri + si) + t2aisi‖3
,

(3)

where 4 indicates the area of the triangle specified by

its arguments, and ri = ci,1 − ci,0, si = ci,2 − ci,1.

In the quadratic case (i.e., κ-curves), as the curva-

ture has such a simple formula, we can express the pa-

rameter ti at the point of maximal curvature explicitly,

εκ-curves: Controlled Local Curvature Extrema 5

in terms of the Bézier coefficients of the ith quadratic

Bézier curve as

ti =
〈ri, ri − si〉
‖ri − si‖2

, (4)

where 〈a, b〉 means the scalar product of vectors a and

b. Then we add the condition

ci(ti) = pi, (5)

where pi is the ith input point. Solving for ci,1 and

substituting into Eq. (4), we get a cubic equation in ti
that depends only on the endpoints ci,0 and ci,2, and

the input points pi.

Unfortunately, we cannot obtain an explicit formula

like Eq. (4) for the parameter ti in the cubic case, be-

cause of its high degree (see details in Appendix A.1),

but this is not a problem. Solving Eq. (5) for ci,1, we

arrive at

ci,1 =
[
pi − (1− ti)3ci,0

− 3(1− ti)ti(1− ai)((1− ti)ci,0 + tici,2)

−t3i ci,2
] /

(3ai(1− ti)ti).
(6)

Substituting this into the derivative of Eq. (3), and let-

ting it equal 0, we obtain (after some simplification)

a polynomial equation of degree 9 in ti. This equation

can be derived by the Maxima [13] code in Figure 13

(Appendix A). We solve this equation and select a real

root in [0, 1]. Note that we have proved that there is

one and only one solution for the polynomial equation

of degree 9 in ti ∈ [0, 1] as in the case of κ-curves; see

details in [15], as well as Appendix A.2.

However, when we use other types of curves with

more complicated representations (see examples in Ap-

pendix C), this kind of formula may be hard to derive.

In these cases, we can use the relaxed Newton’s method

to compute the maximum curvature. For this, we need

to be able to compute the curvature and its derivative;

we do this using a quadratic Taylor series approxima-

tion around the last value of ti.

We introduce the constant λi (0 < λi < 1) according

to the construction method of κ-curves and set

ci,2 = ci+1,0 = (1− λi)ci,1 + λici+1,1. (7)

Let the curvatures at the endpoints of the curve seg-

ment be denoted by κi(0; ai) and κi(1; ai), then from

Eq. (3)

κi(1; ai) =
4

3
· (1− ai)4+

i

a2iλ
2
i ‖ci+1,1 − ci,1‖3

,

κi+1(0; ai+1) =
4

3
·

(1− ai+1)4−
i+1

a2i+1(1− λi)2‖ci+1,1 − ci,1‖3
, (8)

introducing the notations 4+
i = 4(ci,0, ci,1, ci+1,1) and

4−i = 4(ci−1,1, ci,1, ci,2).

By adopting the local/global approach, we treat ci,0
as fixed for the computation of κi(1; ai), although it

depends on λi−1 (similarly for ci+1,2).

In order to guarantee G2 continuity at the joint

of two consecutive segments, the following equations

should be satisfied:

κi(1; ai) = κi+1(0; ai+1). (9)

Hence

λi =

√
(1− ai)4+

i√
(1− ai)4+

i + ai
ai+1

√
(1− ai+1)4−

i+1

. (10)

Since 0 < ai, ai+1 < 1, λi is real and 0 < λi < 1.

3.2 Optimization

In the global phase, we calculate the positions of the

middle control points ci,1 by solving a linear system of

equations. We treat the current values of λi (internal

division ratios of ci,1 and ci+1,1) and ti (parameters of

local maximum curvature) as fixed.

Substituting Eq. (7) into Eq. (5), we get

pi = (1− ti)3 [(1− λi−1)ci−1,1 + λi−1ci,1]

+ 3(1− ti)2ti [(1− ai) [(1− λi−1)ci−1,1 + λi−1ci,1]

+ aici,1]

+ 3(1− ti)t2i [(1− ai) [(1− λi)ci,1 + λici+1,1]

+aici,1]

+ t3i [(1− λi)ci,1 + λici+1,1] , (11)

which can be solved for ci,1.

The optimization process is summarized in Algo-

rithm 1.

Algorithm 1: The optimization process.

Result: control points ci,k and parameters of
maximal curvature ti

Set all λi to 0.5;
Compute all ci,0 and ci,2 by Eq. (7);
while not convergent do

Compute all λi by Eq. (10);
Compute all ci,0 and ci,2 by Eq. (7);
Compute all ti by polynomial root finding;
Compute all ci,1 by Eq. (11);

end
Compute all ci,0 and ci,2 by Eq. (7);

6 Kenjiro T. Miura et al.

Fig. 5: The leftmost curve is a κ-curve. The other curves are εκ-curves: the ai values are equal to 2/3 except for

one, two and three input points, respectively, where ai = 0.85.

(a=2/3) (a=2/3)a=0.95, others=2/3 a=2/3, others=0.95

Fig. 6: The a values of the two wing tips in the second figure from the left are 0.95, and those of the other input

points are 2/3; note the sharpening of the wings. In the third figure, the roles are reversed. The left- and rightmost

curves in red are κ-curves with the same input points.

(a=2/3)
a=0.75 a=0.85 a=0.95

Fig. 7: The leftmost curve is a κ-curve; the other curves are εκ-curves: a is equal to 0.75, 0.85 and 0.95, respectively.

Note the curvature at the inflection points.

3.3 Results

Figure 5 shows examples of closed εκ-curves along with

the original κ-curve. The input points are located at

the same positions. The ai values of these curves are

equal to 2/3, except for one, two and three input points,

respectively, where ai is set to 0.85. If the ai of all input

points are 2/3, the κ-curve on the left is generated.

Since we specify a larger value for some input points,

the magnitudes of the corresponding local maximum

curvature increase, as we expected.

Figure 6 shows another example of local curvature

control. From the left to right, the first drawing shows a

bird using κ-curves. In the second we set a at the wing

tips to 0.95, while leaving all others at the default 2/3.

This has the effect of sharpening the wing tips. In the

third figure, we reversed the role of the input points,

giving a = 2/3 to those at the wing tips, and 0.95 to all

other points. Here the wings are rounded, while other

parts of the bird get sharper.

Notice that the bird’s beak resembles a cusp, but

is actually the start and end points of an open curve

located at the same position. In our implementation,

we limit 2/3 ≤ a ≤ 1 to make a curve with smooth

curvature distribution, which disallows the generation

of a cusp even at a = 1. In cases where the designer

wants to use a cusp, the curve should be cut in two, or

the input points should be relocated to form a cusp as

explained in [27].

Figure 7 shows examples of global curvature con-

trol. There are three εκ-curves, with a set to 0.75, 0.85

and 0.95, respectively, along with the original κ-curve

(a = 2/3) for comparison. By increasing a, the mag-

nitudes of local maximum curvature increase. As the

εκ-curves: Controlled Local Curvature Extrema 7

close-up windows indicate, at the inflection point G2

continuity is violated for κ-curves, and only G1 conti-

nuity is guaranteed. However for εκ-curves with a larger

a, the magnitude of curvature at inflection points, and

consequently the G2 error, become smaller. Note that

although these curves are almost G2-continuous every-

where, they are quite different from those in Figure 2

(generated using the same input points).

Figures 1, 8 and 9 show the effect of changes of the

global shape parameter a on various designs. As dis-

cussed above, larger a values generally induce larger

local curvature extrema and steeper curvature varia-

tion. The resulting curves look more sharp at the input

points and more flat between them.

4 Generalized Trigonometric Basis

In this section, we describe our new generalized trigono-

metric basis. This is based on the trigonometric cubic

Bernstein-like basis [23], which we are going to review

first.

The trigonometric cubic Bernstein-like basis func-

tions have an extra shape parameter α, and are defined

by

f0 = αS2 − αS + C2 = 1 + (α− 1)S2 − αS,
f1 = αS(1− S),

f2 = α(S2 + C − 1) = αC(1− C),

f3 = (1− α)S2 − αC + α = 1 + (α− 1)C2 − αC, (12)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈ [0, 1].

Note that these functions satisfy partition of unity, i.e.,∑3
i=0 fi(t) = 1 for any α. When α = 1, the above func-

tions are simplified to

f0 = 1− S,
f1 = S(1− S),

f2 = C(1− C),

f3 = 1− C. (13)

If we add the second and third functions together and

rename them to u, v and w, we obtain blending func-

tions {u, v, w} as follows:

u = 1− S,
v = S(1− S) + C(1− C) = S + C − 1,

w = 1− C.
(14)

It is straightforward to define a curve by these blend-

ing functions with three control points, which we can

regard as a “linear” trigonometric curve since the high-

est degree the trigonometric functions are in is one.

One interesting relationship among these functions

is

v2 = 2uw, (15)

which enables

(u+ v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (16)

and yields the five blending functions {u2, 2uv, 4uw,

2vw, w2}, associated with five control points. We can

define a curve using these blending functions and regard

it as a “quadratic” trigonometric curve since the highest

power of each blending function is now degree two.

In a similar way, we can extend blending functions

of “degree” n with 2n+1 control points. As explained in

Appendix B, we can perform a recursive procedure to

evaluate a curve of any degree similar to de Casteljau’s

algorithm avoiding the overhead of trigonometric func-

tion evaluation. This means that it is not necessary to

calculate the coefficients of blending functions, or keep

a coefficient table.

We formulate the εκ-curve in this basis using a strat-

egy similar to that in the previous section, i.e., using a

sequence of quadratic trigonometric curves with a con-

straint on the positions of their control points, as shown

in Figure 10. Note the location of the control point P2 =

[(1− a)Q0 + 2aQ1 + (1− a)Q2] /2. The curve c(t; a) is

defined by

c(t; a) =u2Q0 + 2uv [(1− a)Q0 + aQ1]

+ 2uw [(1− a)(Q0 +Q2) + 2aQ1]

+ 2vw [aQ1 + (1− a)Q2] + w2Q2.

(17)

When a is equal to 1/2, the curve degenerates to a linear

trigonometric curve.

4.1 Geometric Constraints and Optimization

First, we analyze the linear trigonometric curve since

it corresponds to the original κ-curve. Let ci(t) be a

linear trigonometric curve with control points ci,0, ci,1
and ci,2 and defined by

ci(t) = (1− S)ci,0 + (S + C − 1)ci,1 + (1− C)ci,2, (18)

where S = sin πt
2 , C = cos πt2 and t ∈ [0, 1]. Its curva-

ture is given by

κi(t) =
2∆(ci,0, ci,1, ci,2)

(C2‖ri‖2 + 2CS〈ri, si〉+ S2‖si‖2)
3
2

, (19)

where ri = ci,1 − ci,0 and si = ci,2 − ci,1. The numera-

tor of the above formula does not depend on t, so the

extrema of the following fi(t) corresponds to those of

κi(t):

fi(t) = C2‖ri‖2 + 2CS〈ri, si〉+ S2‖si‖2, (20)

8 Kenjiro T. Miura et al.

(a=2/3) a=0.7 a=0.8 a=0.95 (a=2/3)

Fig. 8: Changing the global shape parameter in the bear model.

(a=2/3) a=0.7 a=0.8 a=0.95 (a=2/3)

Fig. 9: Changing the global shape parameter in the elephant model.

a:
1-
a 1-a:a

1:1

P
0
=Q

0

P
2
=((1-a)(Q

0
+Q

2
)+2aQ

1
)/2

P
4
=Q

2

Q
1

P
1
=(Q

0
+Q

1
)/2

Q
1

P
3
=(Q

1
+Q

2
)/2

P
0
=Q

0
P
4
=Q

2

P
2
=(Q

0
+2Q

1
+Q

2
)/4

Fig. 10: Constrained quadratic trigonometric curve.

When a = 1/2 (bottom), the curve becomes linear.

and its derivative with respect to t is given by

dfi(t)

dt
=π(−CS‖ri‖2 + (−S2 + C2)〈ri, si〉

+ SC‖si‖2).

(21)

By assuming dfi(t)/dt = 0 with S,C 6= 0, we obtain

S2 − γSC − C2 = 0, (22)

where γ = (‖si‖2 − ‖ri‖2)/〈ri, si〉. We can solve the

above equation and obtain

C =
−γ +

√
γ2 + 4

2
S = βS. (23)

Since 0 ≤ S,C ≤ 1, we have the unique solution

S =
1√
β2 + 1

. (24)

Hence

t =
2

π
arcsin

1

β2 + 1
. (25)

Note that when ri and si are perpendicular to each

other, if ‖ri‖ = ‖si‖, then the curve becomes a circular

arc, and no local maximum curvature exists. If ‖ri‖ >
‖si‖, then the curvature at t = 1 will be maximum and

if ‖ri‖ < ‖si‖, the curvature at t = 0 will be maximum

in this curve segment.

For a quadratic trigonometric curve, the curvatures

κi(1; ai) and κi+1(0; ai) at the endpoints of the con-

strained quadratic trigonometric curve ci are given by

κi(1; ai) =
1− ai
a2i

· 4+
i

λ2i ‖ci+1,1 − ci,1‖3
,

κi+1(0; ai+1) =
1− ai+1

a2i+1

·
4−
i+1

(1− λi)2‖ci+1,1 − ci,1‖3
.

(26)

We can calculate λi by guaranteeing G2 continuity at

the joint of ci(1; ai) and ci+1(0; ai+1):

λi =

√
(1− ai)4−

i√
(1− ai)4−

i + ai
ai+1

√
(1− ai+1)4+

i+1

. (27)

εκ-curves: Controlled Local Curvature Extrema 9

(a=2/3) a=0.75

a=0.9a=0.75

a=0.9

a=0.55 a=0.6

a=2/3

Fig. 11: The two curves on the top left (red) are κ-curves; the two on the top right (brown) are εκ-curves using cubic

Bernstein basis functions with a = 0.75 and 0.9. The bottom row shows εκ-curves using quadratic trigonometric

basis functions with a = 0.55, 0.6, 0.75 and 0.9.

a=0.7 a=0.55

Fig. 12: A Christmas tree drawn with εκ-curves using the cubic Bernstein basis functions (left) and the quadratic

trigonometric basis functions (right). Note that the latter has more rounded forms and—in this case—preferable.

As before, we get a linear system of equations for
ci,1:

pi = u2
i ((1− λi−1)ci−1,1 + λi−1ci,1)

+ 2uivi((1− ai)(1− λi−1)ci−1,1 + ((1− ai)λi−1 + ai)ci,1)

+ 2uiwi((1− ai)(1− λi−1)ci−1,1 + ((1− ai)λi−1

+ 2ai + (1− ai)(1− λi))ci,1 + (1− ai)λici+1,1)

+ 2viwi((ai + (1− ai)(1− λi))ci,1 + (1− ai)λici+1,1)

+ w2
i ((1− λi)ci,1 + λici+1,1), (28)

where ui = 1 − sin πti
2 , vi = sin πti

2 + cos πti2 − 1 and

wi = 1− cos πti2 .

4.2 Results

Figures 11 and 12 show examples of εκ-curves using

the quadratic trigonometric basis functions explained

in this section. In the first figure, the top left two curves

(red) are κ-curves. The top right two curves (brown) are

εκ-curves, using cubic Bernstein basis functions with

a = 0.75 and 0.9. The bottom row (green) shows εκ-

curves using quadratic trigonometric basis functions with

a = 0.55, 0.6, 0.75 and 0.9. The curves in the bottom

row are more rounded than those of the Bernstein basis.

By increasing a, the differences between the two types

of curves become smaller as they approach a polyline

generated by connecting the input points.

The second figure shows a case where these more

rounded forms are clearly preferable.

4.3 Use of Built-in Shape Parameters

So far our strategy made use of degree elevation – from

quadratic to cubic in the polynomial case, and from lin-

ear to quadratic in the trigonometric case. Yet another

10 Kenjiro T. Miura et al.

strategy is to use extra shape parameters built into the

basis functions.

As an illustrative example, take the trigonometric

cubic Bernstein-like basis functions reviewed in the pre-

vious section. In the framework of εκ-curves, we have

to degenerate the curve by relocating the positions of

its control points, essentially reducing its degree.

The trigonometric cubic Bernstein-like basis func-

tions need four control points to define a curve. To con-

struct “quadratic” curves corresponding to the quad-

ratic Bézier segments of κ-curves, we make the second

and third control points collocate. Hence the blending

functions become

b0(t;α) = 1 + (α− 1)S2 − αS,
b1(t;α) = α(S + C − 1),

b2(t;α) = 1 + (α− 1)C2 − αC, (29)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈

[0, 1]. Incidentally, this will result in the same curve

as Eq. (17), if we substitute 2a for α.

Note that several curve types – such as the cubic

alternative curve and the αβ-Bernstein-like basis func-

tions, for specific extra parameters – have zero curva-

ture at the endpoints, so we cannot obtain the internal

division ratio λi. For these curves, the method shown

in this section cannot be applied. See details in Ap-

pendix C.

5 Conclusions and Future Work

We have proposed two types of εκ-curves as exten-

sions of κ-curves, for controlling the magnitudes of local

maximum curvature. Our methods use degree elevation

of the Bernstein basis functions, and a new family of

trigonometric basis functions.

In line with Yan et al.’s paradigm shift for curve

generation we consider the local maximum curvature

in the middle, instead of focusing on the endpoints.

The new curves preserve all of the nice properties of κ-

curves, i.e., point interpolation, G2 continuity (except

at inflection points), continuous modification (changes

smoothly when the input points move), and local in-

fluence. Computing εκ-curves is quite fast, and design-

ers can manipulate them interactively, acquiring much

more expressive power for curve design, as illustrated

by our examples. The processing time for generating

εκ-curves is similar to that of κ-curves, especially for

εκ-curves with cubic Bernstein basis. For example, κ-

curves consume 0.07 sec to draw Figure 8 (bear). Under

similar conditions, cubic Bézier εκ-curves consume 0.08

sec and generalized trigonometric εκ-curves takes 0.37

sec on average.

Future work includes the development of εκ-curve

plug-ins for Adobe Illustrator® and Photoshop®. An-

other possible research direction is to apply the pro-

posed method to different types of aesthetic curves, e.g.,

log-aesthetic curves [25], σ-curves [17] or τ -curves [18].

Acknowledgement

This work was supported by JST CREST (No. JP-

MJCR1911); JSPS Grant-in-Aid for Scientific Research

(B, No. 19H02048); JSPS Grant-in-Aid for Challenging

Exploratory Research (No. 26630038); Solutions and

Foundation Integrated Research Program; ImPACT Pro-

gram of the Council for Science, Technology and In-

novation; and the Hungarian Scientific Research Fund

(OTKA, No. 124727). The authors acknowledge the

support by 2016, 2018 and 2019 IMI Joint Use Pro-

gram Short-term Joint Research “Differential Geome-

try and Discrete Differential Geometry for Industrial

Design” (September 2016, September 2018 and Septem-

ber 2019). The second author acknowledges Univer-

sity Malaysia Terengganu for approving sabbatical leave

which was utilized to work on emerging researches, in-

cluding this work.

References

1. Attneave, F.: Some informational aspects of visual per-
ception. Psychological Review 61, 183–193 (1954)

2. Barsky, B.A., Beatty, J.C.: Local control of bias and ten-
sion in beta-splines. ACM Transactions on Graphics 2(2),
109–134 (1983)

3. do Carmo, M.P.: Differential geometry of curves and sur-
faces. Prentice-Hall (1976)

4. Chelius, C.: Using the curvature tool
in Adobe Illustrator (2016). URL
https://web.archive.org/web/20161023130701/
https://creativepro.com/curvature-tool-adobe-
illustrator/

5. Chen, Z., Huang, J., Cao, J.C., Zhang, Y.J.: Inter-
polatory curve modeling with feature points control.
Computer-Aided Design 114, 155–163 (2019)

6. Djudjic, D.: Photoshop CC officially gets curva-
ture pen tool and other improvementsts (2017).
URL https://web.archive.org/web/20200620025914/
https://www.diyphotography.net/photoshop-cc-
officially-gets-curvature-pen-tool-improvements/

7. Farin, G.: Curves and surfaces for CAGD. Morgan-
Kaufmann (2001)

8. Han, X.A., Ma, Y., Huang, X.: The cubic trigonometric
Bézier curve with two shape parameters. Applied Math-
ematics Letters 22(2), 226–231 (2009)

9. Jamaludin, M., Said, H., Majid, A.: Shape control of
parametric cubic curves. In: Proceeding of the 4th Inter-
national Conference on CAD & CG, pp. 161–167 (2001)

10. Julia: The Julia programming language (2020). URL
https://julialang.org/

εκ-curves: Controlled Local Curvature Extrema 11

11. Levien, R., Séquin, C.H.: Interpolating splines: Which
is the fairest of them all? Computer-Aided Design and
Applications 6(1), 91–102 (2009)

12. Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.:
A local/global approach to mesh parameterization. In:
Proceedings of the Symposium on Geometry Processing,
pp. 1495–1504 (2008)

13. Maxima: A computer algebra system. version 5.44.0
(2020). URL http://maxima.sourceforge.net/

14. Miura, K.T.: A general equation of aesthetic curves and
its self-affinity. Computer-Aided Design and Applications
3(1-4), 457–464 (2006)

15. Miura, K.T., Salvi, P.: On the curvature ex-
trema of special cubic Bézier curves (2021). URL
https://arxiv.org/abs/2101.08138

16. Miura, K.T., Shibuya, D., Gobithaasan, R.U., Usuki,
S.: Designing log-aesthetic splines with G2 continuity.
Computer-Aided Design and Applications 10(6), 1021–
1032 (2013)

17. Miura, K.T., Suzuki, S., Gobithaasan, R.U., Usuki, S.,
Inoguchi, J., Sato, M., Kajiwara, K., Shimizu, Y.: Fair-
ness metric of plane curves defined with similarity geome-
try invariants. Computer-Aided Design and Applications
15(2), 256–263 (2018)

18. Miura, K.T., Suzuki, S., Usuki, S., Gobithaasan, R.U.: τ -
curve – Introduction of cusps to aesthetic curves. Journal
of Computational Design and Engineering 7(2), 155–164
(2020)

19. Norman, J.F., Phillips, F., Ross, H.E.: Information con-
centration along the boundary contours of naturally
shaped solid objects. Perception 30, 1285–1294 (2001)

20. Said, H.: Generalized ball curve and its recursive algo-
rithm. ACM Transactions on Graphics 8, 360–371 (1989)

21. Salvi, P.: Implementation of εκ-curves (2020). URL
https://github.com/salvipeter/ekcurves/

22. Sorkine, O., Alexa, M.: As-rigid-as-possible surface mod-
eling. In: Proceedings of the Symposium on Geometry
Processing, pp. 109–116 (2007)

23. Usman, M.M., Abbas, M., Miura, K.T.: Some engineer-
ing applications of new trigonometric cubic Bézier-like
curves to free-form complex curve modeling. Journal of
Advanced Mechanical Design, Systems, and Manufactur-
ing 14(4), 1 (2020)

24. Walton, D.J., Meek, D.S.: Curvature extrema of planar
parametric polynomial cubic curves. Journal of Compu-
tational and Applied Mathematics 134, 69–83 (2001)

25. Wang, D., Gobithaasan, R.U., Sekine, T., Usuki, S.,
Miura, K.T.: Interpolation of point sequences with ex-
tremum of curvature by log-aesthetic curves with G2 con-
tinuity. Computer-Aided Design and Applications 18(2),
399–410 (2021)

26. Yan, Z., Schiller, S., Schaefer, S.: Circle reproduction with
interpolatory curves at local maximal curvature points.
Computer Aided Geometric Design 72(6), 98–110 (2019)

27. Yan, Z., Schiller, S., Wilensky, G., Carr, N., Schaefer,
S.: κ-curves: Interpolation at local maximum curvature.
ACM Transactions on Graphics 36(4), Article 129 (2017)

28. Yuksel, C.: A class of C2 interpolating splines. ACM
Transactions on Graphics 39(5) (2020)

29. Zhang, G., Wang, K.: Quasi-cubic trigonometric curve
and surface. Preprint (2019)

30. Zhang, J.: C-curves: An extension of cubic curves. Com-
puter Aided Geometric Design 13, 360–371 (1996)

31. Zhu, Y., Han, X., Liu, S.: Curve construction based
on four αβ-Bernstein-like basis functions. Journal of
Computational and Applied Mathematics 272, 160–181
(2015)

32. Ziatdinov, R.: Visual perception, quantity of information
function and the concept of the quantity of information
continuous splines. Scientific Visualization 8(1), 168–178
(2016)

A Local Maximum Curvature of Cubic

Polynomial Curves

A.1 General Case

The signed curvature κ(t) of a cubic polynomial curve c(t) =
(x(t), y(t)) is given by [3] as

κ(t) =
x′y′′ − x′′y′

(x′2 + y′2)
3

2

, (30)

where x′ = dx(t)/dt, x′′ = d2x(t)/dt2, and higher derivatives
are expressed in a similar way.

At the extremum dκ(t)/dt = 0 and dκ(t)2/dt = 2κ(t) ·
dκ(t)/dt. Hence, if we exclude points where κ(t) = 0 we can
obtain t values at the extrema.

By differentiating

κ(t)2 =
(x′(t)y′′(t)− x′′(t)y′(t))2

(x′(t)2 + y′(t)2)3
(31)

with respect to t, we obtain(
x′2 + y′2

)4
κ

dκ

dt
= (x′′y′ − x′y′′)

(
(x′′′y′ − x′y′′′)(x′2 + y′2)

− 3(x′x′′ + y′y′′)(x′′y′ − x′y′′)
)
, (32)

where x′y′′ − x′′y′ = 0 means the curvature is equal to 0,
and it corresponds to inflection points. Consequently,

(x′′′y′ − x′y′′′)(x′2 + y′2)− 3(x′x′′ + y′y′′)(x′′y′ − x′y′′) = 0
(33)

corresponds to curvature extrema. The above equation is re-
garded as (quadratic × quartic) − (cubic × cubic), but the
coefficient of sextic terms vanishes and it becomes quintic.
Therefore a cubic polynomial curve can have at most 5 cur-
vature extrema. Please refer to [24] for more details. Since
Eq. (33) is quintic, it is generally not possible to have analyt-
ical solutions, so we must use numerical approach to obtain
the points on the curve where curvature extrema occurs.

A.2 Uniqueness

Here we give a high-level summary of the proof [15] that the
curvature of a cubic curve of the form shown in Eq. (1) has
at most one local extremum in the (0, 1) parameter interval.
As a consequence, the degree-9 polynomial in Section 3.1,
computed by the Maxima [13] program in Fig. 13, has at most
one real solution in the (0, 1) interval. When it has none, this
means that no local extremum is present in the curvature, so
the extremum occurs at

t0 = arg max
t=0,1

|κ(t)|. (34)

Without loss of generality, place the control points as fol-
lows:

Q0 = (−1, 0), Q1 = (b, h), Q2 = (1, 0), (35)

12 Kenjiro T. Miura et al.

where b ≥ 0 and h > 0. (The special cases where Q0 = Q2 or
h = 0 are also handled in [15].)

Let N(t, a) denote the left side of Eq. (33) applied to this
curve. When b ≤ 3−2/a, it is easy to see that ∂N(t, a)/∂t < 0
for any t ∈ (0, 1) and a ∈ [2/3, 1], so N is decreasing. Since
N(0, a) is always positive, this means N has at most one 0-
crossing.

In the following, let us also assume that b > 3−2/a. Then
the following statements can also be proven:

N(1, a) < 0 when ∂N(1, a)/∂t > 0, (36)

∂N(0, a)/∂t < 0, (37)

∂N(t, a)/∂t < 0 when ∂N(1, a)/∂t < 0, (38)

∂2N(0, a)/∂t2 > 0, (39)

∂3N(t, a)/∂t3 < 0. (40)

From the above it is easy to prove that N(t, a) = 0 has exactly
one solution—and thus the curvature has at most one local
extremum—in (0, 1).

B Generalized Trigonometric Basis Functions

B.1 Recursive evaluation

For our new trigonometric basis, we can derive a recursive
algorithm similar to de Casteljau’s algorithm. For simplicity
we explain only the quadratic case, but it can be extended to
a general degree n by induction. To shorten expressions, we
use u = 1−S(t), v = S(t)+C(t)−1 and w = 1−C(t), where
S(t) = sin πt

2
and C(t) = cos πt

2
. Note that v2 = 2uw, and

(u+ v + w)2 =

u(u+ v + w) + v(u+ v + w) + w(u+ v + w).
(41)

For a quadratic curve with this basis, five control points
Pi (i = 0 . . . 4) are used, and the curve point at t is evaluated
as

[
u v w

] P0 P1 P2

P1 P2 P3

P2 P3 P4

u v
w

 . (42)

Hence the algorithm repeats a simple blending of three points
uPi−1 + vPi+wPi+1 to generate a point on the given curve.

B.2 Triangle method

We can also construct a triangle using the coefficients of
trigonometric basis functions, similarly to Pascal’s triangle.
Below is a table of degree elevation, from the first row repre-
senting degree 1 to the sixth row representing degree 6:

1 1 1
1 2 4 2 1

1 3 9 8 9 3 1
1 4 16 20 34 20 16 4 1

1 5 25 40 90 74 90 40 25 5 1
1 6 36 70 195 204 328 204 195 70 36 6 1

(43)

C Various Basis Functions

Here we check the applicability of the bases listed in Sec-
tion 2, except for the trigonometric cubic Bernstein-like basis
functions [23], since that was already discussed in the paper.

C.1 C-Bézier curve [30]

The basis of the C-Bézier curve is {sin t, cos t, t, 1}, and the
curve is defined by the following formula:

Bα(t) = Z0(t)q0 + Z1(t)q1 + Z2(t)q2 + Z3(t)q3

=
1

α− S


sin t
cos t
t
1


> 

C 1− C −M M −1
−S (α−K)M −KM 0
−1 M −M 1
α −(α−K)M KM 0



q0
q1
q2
q3

 .
Here α is a built-in shape parameter satisfying 0 < α ≤ π,

and S = sinα, C = cosα. The parameter of the curve is
t ∈ [0, α], and

K =
α− S
1− C

,

M =

{
1 if α = π,
S

α−2K
= S(1−C)

2S−α−αC if 0 < α < π.

We degenerate the curve by adding its second and third
basis functions, i.e., placing the second and third control
points at the same position. The curve is then defined by three
control points. However, even if we vary α from 0 to π, the
blending functions do not vary much, as shown in Figure 14.
Therefore this type of curve is not suitable for changing the
magnitude of local maximum curvature.

C.2 Cubic alternative curve [9]

The cubic alternative curve is similar to the cubic Bézier
curve, and is defined by

Z(t) = F0(t)P0 + F1(t)P1 + F2(t)P2 + F3(t)P3, 0 ≤ t ≤ 1,

where the basis functions Fi(t), t = 0 . . . 3 are

F0(t) = (1− t)2(1 + (2− α)t),

F1(t) = α(1− t)2t,
F2(t) = βt2(1− t),
F3(t) = t2(1 + (2− β)(1− t)).

When α = β = 2, the curve becomes the cubic Ball curve;
for α = β = 3, the classical cubic Bézier curve; and for
α = β = 4, the cubic Timmer curve. The basis functions
are nonnegative when 0 ≤ α ≤ 3.

We assume that β = α, and the curve is degenerated by
adding the second and third blending functions. Hence

A0(t;α) = (1− t)2(1 + (2− α)t),

A1(t;α) = α(1− t)t
= 1− (1− t)2(1 + (2− α)t)− t2(1 + (2− α)(1− t)),

A2(t;α) = t2(1 + (2− α)(1− t)).

We define the curve c(t;α) by

c(t;α) = A0(t;α)P0 +A1(t;α)P1 +A2(t;α)P2

= A0(t;α)(P0 − P1) + P1 +A2(t;α)(P2 − P1).

εκ-curves: Controlled Local Curvature Extrema 13

/*

Input:

(x0,y0) and (x2,y2) - the endpoints

(px,py) - the point to interpolate at the maximal curvature

a - alpha, the ratio for conversion between quadratic/cubic

Output:

<a 9th-degree polynomial in t, having one real solution in [0,1]>

*/

/* (cx,cy) is the curve, (dx,dy) and (ddx,ddy) are the 1st and 2nd derivatives */

cx: (1-t)^3*x0+3*(1-t)^2*t*((1-a)*x0+a*x1)+3*(1-t)*t^2*((1-a)*x2+a*x1)+t^3*x2$

cy: (1-t)^3*y0+3*(1-t)^2*t*((1-a)*y0+a*y1)+3*(1-t)*t^2*((1-a)*y2+a*y1)+t^3*y2$

dx: diff(cx,t)$

dy: diff(cy,t)$

ddx: diff(dx,t)$

ddy: diff(dy,t)$

/* n and d are the numerator and denominator of the curvature, respectively */

n: dx*ddy-ddx*dy$

d: (dx^2+dy^2)^(3/2)$

/* The numerator of the curvature’s derivative; we need to solve dk = 0 */

dk: diff(n,t)*d-n*diff(d,t)$

/* Looking at factor(dk), we can see that there is some room for simplification */

dk1: factor(dk/(162*a*(x1*y2-x0*y2-x2*y1+x0*y1+x2*y0-x1*y0)*sqrt(dx^2+dy^2)))$

solution: rhs(solve(dk1,t)[1])$

/* (x1,y1) is set s.t. the curve interpolates (px,py) */

x1: (px-((1-t)^3+3*(1-t)^2*t*(1-a))*x0-(3*(1-t)*t^2*(1-a)+t^3)*x2)/(3*(1-t)*t*a)$

y1: (py-((1-t)^3+3*(1-t)^2*t*(1-a))*y0-(3*(1-t)*t^2*(1-a)+t^3)*y2)/(3*(1-t)*t*a)$

/* Generate a string representation that can be inserted in a program */

display2d: false$ /* programming-friendly output */

collectterms(expand(num(xthru(ev(solution,x1=x1,y1=y1)))),t);

Fig. 13: Maxima [13] code to calculate the degree-9 polynomial in Section 3.1.

a=p/8 a=7p/8

1.0

0.8

0.2

0.4

0.6

1.0

0.8

0.2

0.4

0.6

1.00.80.2 0.4 0.6 1.00.80.2 0.4 0.6

Fig. 14: Blending functions of the degenerated

(quadratic) C-Bézier curve.

Then

dc(t;α)

dt
= (1− t)(−3αt+ 6t+ α)(P1 − P0)

+ t(3αt− 6t− 2α+ 6)(P2 − P1),

d2c(t;α)

dt2
= 2

[
(3αt− 6t− 2α+ 3)(P1 − P0)

+ (3αt− 6t− α+ 3)(P2 − P1)
]
.

Hence the curvature κi(t;α) for each curve segment is given
by

κi(t;α) =
2αi(3(α − 2)(1 − t)t − αi + 3)(P1 − P0) × (P2 − P1)

‖(1 − t)(−3αit + 6t + αi)(P1 − P0) + t(3αit − 6t − 2αi + 6)(P2 − P1)‖3
.

When α = 3, this degenerates to the classical cubic Bézier
curve with collocated second and third control points, and
at the endpoints we get κi(0, 3) = κi(1, 3) = 0, since the
directions of the first and second derivatives are the same.
Hence, the proposed method is not applicable in this case.

When α 6= 0,

κi(1;αi) =
4(3− αi)4+

i

α2
iλ

2
i ‖ci+1,1 − ci,1‖3

,

κi+1(0;αi) =
4(3− αi+1)4−i+1

α2
i+1(1− λi)2‖ci+1,1 − ci,1‖3

.

To guarantee G2 continuity at the joint of the segments,
when 0 < αi, αi+1 < 3, we can compute λi (0 < λi < 1) by

λi =

√
(3− αi)4+

i√
(3− αi)4+

i + αi
αi+1

√
(3− αi+1)4−i+1

.

14 Kenjiro T. Miura et al.

When αi, αi+1 > 3,

λi =

√
(αi − 3)4+

i√
(αi − 3)4+

i + αi
αi+1

√
(αi+1 − 3)4−i+1

.

In other cases, such as αi > 3, 0 < αi+1 < 3 or 0 < αi <
3, αi+1 > 3, λi can be determined by careful handling of the
signs of 3− αi and 3− αi+1.

By assuming a local maximum curvature at ti, we can
express the input point pi as

pi = (1− ti)2(1 + (2− αi)ti) [(1− λi−1)ci−1,1 + λi−1ci,1]

+ αi(1− ti)tici,1
+ t2i (1 + (2− αi)(1− ti)) [(1− λi)ci,1 + λici+1,1] .

C.3 Cubic trigonometric Bézier curve [8]

For λ, µ ∈ [−2, 1], t ∈ [0, 1], the cubic trigonometric Bézier
denoted as T-Bézier basis functions are defined by

b0(t) = (1− S)2(1− λS),

b1(t) = S(1− S)(2 + λ− λS),

b2(t) = C(1− C)(2 + µ− µC),

b3(t) = (1− C)2(1− µC),

where S = sin πt
2

and C = cos πt
2

.
We assume λ = µ = α, and the curve is degenerated by

adding the second and third blending functions. Hence

A0(t;α) = (1− S)2(1− αS),

A1(t;α) = 1− (1− S)2(1− αS)− (1− C)2(1− αC),

A2(t;α) = (1− C)2(1− αC).

We define the curve c(t;α) by

c(t;α) = (1− S)2(1− αS)P0

+ (1− (1− S)2(1− αS)− (1− C)2(1− αC))P1

+ (1− C)2(1− αC)P2

= (1− S)2(1− αS)(P0 − P1) + P1

+ (1− C)2(1− αC)(P2 − P1).

Then

dc(t;α)

dt
=
π

2

[
(1− S)C(2 + α− 3αS)(P1 − P0)

+ (1− C)S(2 + α− 3αC)(P2 − P1)
]
,

d2c(t;α)

dt2
=
π2

4

[
(S − 1)((2S + 1)(2 + α− 3αS) + 3αC2)(P0 − P1)

+ (1− C)((2C + 1)(2 + α− 3αC) + 3αS2)(P2 − P1)
]
.

Hence dc/dt× d2c/dt2 is given by

dc

dt
×
d2c

dt2
= (1− S)(1− C)[
C(2 + α− 3αS)((2C + 1)(2 + α− 3αC) + 3αS2)

+ S(2 + α− 3αC)((2S + 1)(2 + α− 3αS + 3αC2)
]

(P1 − P0)× (P1 − P0).

When α = 0, this curve is the same as the trigonometric
cubic Bernstein-like curve with α = 2, and the curvatures at
the start- and endpoints κ(0) and κ(1) are generally not equal
to zero. For other α values, κ(0) = κ(1) = 0, so our method
is not applicable. This is because the directions of the first
and second derivatives are the same.

C.4 αβ-Bernstein-like basis functions [31] and

quasi-cubic trigonometric Bernstein basis curves [29]

For arbitrary α, β ∈ [2,+∞], and t ∈ [0, 1], the αβ-Bernstein-
like basis functions are defined by

A0(t;α) = (1− t)α,
A1(t;α) = 1− 3t2 + 2t3 − (1− t)α,

A2(t;β) = 3t2 − 2t3 − tβ ,

A3(t;β) = tβ .

When α = β = 2, these degenerate to cubic Said-Ball basis
functions [20]. When α = β = 3, these become cubic Bern-
stein basis functions.

Let β = α and we degenerate the curve by adding the
second and third blending functions. Hence

A0(t;α) = (1− t)α,
A1(t;α) = 1− (1− t)α − tα,
A2(t;α) = tα.

We define the curve c(t) by

c(t;α) = (1− t)αP0 + (1− (1− t)α − tα)P1 + tαP2

= (1− t)α(P0 − P1) + P1 + tα(P2 − P1).

Then

dc(t;α)

dt
= α

[
(1− t)α−1(P1 − P0) + tα−1(P2 − P1)

]
,

d2c(t;α)

dt2
= α(α− 1)

[
(1− t)α−2(P0 − P1) + tα−2(P2 − P1)

]
.

Hence its curvature κ(t;α) is given by

κ(t;α) =
α− 1

α
·

(1− t)α−2tα−2(P1 − P0)× (P2 − P1)

‖(1− t)α−1(P1 − P0) + tα−1(P2 − P1)‖3
.

When α = 2 (cubic Said-Ball curve) the curvatures at the
start- and endpoints κ(0;α) and κ(1;α) are generally not
zero. However, when α > 2, we get κ(0;α) = κ(1;α) = 0.
Therefore in this case our method is not applicable.

In the case of quasi-cubic trigonometric Bernstein basis
curves, the directions of the first and second derivatives at
the ends are the same, thus our method is not applicable.

