Using Bézier extraction matrices

Péter Salvi

November 18, 2021

Given a B-spline curve of degree d with L segments and n control points in the form

$$\mathcal{C}(u) = \sum_{k=0}^{n-1} P_k N_k^{d,U}(u),$$

where U is the clamped knot vector with $d+1$ identical values at both ends, and $N_k^{d,U}$ are the B-spline basis functions, the i-th Bézier component ($i = 0..L - 1$) can be extracted as

$$\hat{\mathcal{C}}_i(u) = \sum_{j=0}^{d} Q_{i,j}^d B_j^d(u),$$

where B_j^d are the Bernstein polynomials and

$$Q_{i,j}^d = \sum_{k=0}^{d} P_{k+s_i-d} C_{k,j}^i \equiv [Q_i^d] = C_i^T \cdot [P],$$

because of the extraction relation

$$N_k^{d,U}(u) = \sum_{j=0}^{d} C_{k+d-s_i,j}^i B_j^d(u),$$

C_i^i being the i-th extraction matrix of the degree-d knot vector U, and s_i denoting the span index of the i-th segment.

Conversely, a B-spline control point P_k can be restored from a suitable Bézier segment (i.e., one that is in the same span), using the formula

$$P_k = \sum_{j=0}^{d} Q_{j}^d (C_i^{-1})_{j,k+d-s_i} \equiv [P] = (C_i^{-1})^T \cdot [Q_i^d].$$