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After reviewing different approaches, a new algorithm is presented for fairing B-spline curves and surfaces. It is based on a novel 

fairness measure, which is derived from a notion called "target curvature". The target curvature is computed from the not-yet-

faired curve or surface automatically, but with optional user-interaction to make it flexible. The method itself is parameter 

invariant and local. We introduce two implementations, a slower, iterative method emphasizing locality and a faster algorithm 

involving discrete integration and fitting. The results are illustrated by a few examples. 

 

1. Introduction 

Digital Shape Reconstruction (DSR) is a fast growing area in CAGD, 

which deals with the creation of geometric models using measured 

data. In many practical applications of DSR, surface fairness is a 

crucial matter, in particular in the automobile industry. Although 

fairness does not have an exact mathematical definition, researchers 

agree that the curvature of fair surfaces must be evenly distributed. A 

wide range of graphical interrogation tools has been developed to 

detect small surface artifacts, but even with these, fairing is a 

laborious manual process. This is why there is a natural need for 

(semi) automatic fairing algorithms that smooth the surface while 

preserving the highly curved features of the original shapes. 

One widely used criterion of fairness is the smoothness and smooth 

distribution of reflection lines. If a fair object was placed into a room 

lit by parallel lights, the reflections of the light source should bend 

smoothly and evenly over the surface. Isophote lines are very similar 

to reflection lines, since their smoothness depends on the change of 

the first derivative of the surface. An isophote line is a set of surface 

points where the angle between the normal vector and the viewing 

direction is the same (within a given tolerance). Since this map is 

much simpler than the previous, but reveals just about the same flaws, 

it is more often seen in practice. 

Isophote lines are an example of interrogation tools, because they 

help the user to find minor discontinuities or wiggles on the surface. 

Other tools include the curvature maps and the curvature combs, 

which depend on the second derivatives. Curvature maps color-code 

the curvature values and can have various types (Gaussian, mean, 

minimum, maximum, etc.), curvature combs display the values as 

orthogonal straight line segments along a curve. 

In order to implement a fairing algorithm, it is common to define a 

fairness measure, i.e. a functional that represents the fairness of the 

surface. In other words, we can say that a surface S is fair, if F(S) < τ 

applies, where τ is a user-defined tolerance. 

We propose a new fairness measure, along with two algorithms that 

make use of it: a simple, iterational procedure focusing on locality 

and a fast, direct method involving integration and fitting. 

2. Previous Work 

One “classical” definition of fairness by Farin and Sapidis is as 

follows: A curve is fair if its curvature plot is continuous and consists 

of only a few monotone pieces [2]. But as Roulier and Rando point 

out, we cannot hope to have a universal fairness measure or 

algorithm. Still, we should strive to create new ones, in order to give 

designers the freedom of choosing the most suitable algorithms for 

their tasks [6]. 

2.1. Fairness Measures 

A natural measure for curve fairness is the strain energy, which is 

based on a drawing technique used in ship design. To create a smooth 

curve, metal weights were placed at the interpolation points and a 

flexible spline was spanned between them. The resulting curve c 

minimizes the strain energy, yielding the measure ( )( )∫= ,
2
dssE κ  

where κ(s) is the curvature of the curve as a function of the arc length. 

This minimizes the mean curvature, while giving a penalty to the 

extreme values by squaring [6]. 

Computing the curvature can be difficult, so it is often replaced by 

a simpler, parameter-dependent formula ( )( )∫ ′′= .ˆ 2
dttcE This has the 

drawback that in cases where the parameterization substantially 

differs from the arc-length parameterization, fairness is not 

guaranteed, and unexpected results may occur. 

Moreton and Séquin introduced another measure [4], called 

Minimum Variation Curve, optimizing the variation of the curvature: 

( )( )∫ ′= .
2
dssE

MVC
κ  This has the advantage that it does not create 

unnecessary inflection points. 

The curve-fairing measures introduced so far all have their surface-

fairing equivalents. Similar to the strain energy, in the surface case we 

can minimize the thin plate energy, which also has a simpler variant 

that is parameter dependent and can only be used safely for surfaces 

with isometric parameterization. 

Moreton and Séquin suggested an alternative measure based on the 

variation of the principal curvatures. It vanishes on spheres, cones and 

tori. Although this measure gives excellent results, it requires very 

complex computations. 

2.2. Fairing Algorithms 

One of the simplest, widely used curve-fairing methods is the knot 

removal and reinsertion (KRR), originally conceived by Kjellander 

and later made local by Sapidis and Farin [2]. 

An order k B-spline is C
k-1 

continuous at every point except the 

knot points, where it has only C
k-2
 continuity. We can add knots to a 

B-spline in a way that its shape does not change. On the other hand, if 

we take out a knot, we can only preserve the shape if the curve was 

originally C
k-1 

continuous at that knot point. The knot removal 

problem breaks down to an over-defined equation that can have 

several approximate solutions. Farin gives the most local solution for 

third degree B-splines [2], repositioning only one control point. 

This gives the idea of the KRR algorithm, i.e. to find, remove and 

then reinsert the knot where the third derivative has the largest 

discontinuity, thus ensuring C
3
 continuity at the knot. The process 

may be iterated until a suitable end condition is met. Finding such a 

condition is not a trivial task. A vast range of heuristics can be 

applied, including best-first-search [3] and simulated annealing [5]. 

Eck and Hadenfeld fix all but one control points and locally 

minimize the fairness measure ( )( )∫
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dttcE where l=2 or 3, 

while keeping the deviation from the original curve under a 

predefined tolerance by constraining the new control points to be in 

the vicinity of the original control polygon. 

Both of these methods have equivalents in surface fairing. The 

main disadvantage of the KRR algorithm is that removing a knot 

changes a whole line of control points in the other parametric 

direction. Hahmann proves that it is sufficient to remove and reinsert 

a knot in only three rows or columns [3], but the generalized KRR 

ensures C
3
 continuity in only one parametric direction, which is not 

satisfactory in real-life applications. 

Hadenfeld proposed a fairing method using the thin plate energy 

metric [1]. As above, only one control point is moved at a time and 

the largest deviation is constrained from the original. 

3. The New Algorithm 

In this section we first sketch a fairing algorithm for curves, then we 

generalize it for surfaces. We can expect that the curvature comb of a 

fair curve is smooth, without any jumps or sudden changes. Therefore 

we can smooth the curve defined by the curvature comb's endpoints, 

which is practically the same as the evolute. We will call the 

smoothed curve the target evolute. 

Now we want to find a curve that is close to the original, but whose 



evolute is the target evolute. This also defines a fairness measure: the 

closer the evolute is to the target evolute, the fairer is the curve. Let ρ 

denote the radius of the osculating circle, n the normal and e the 

target evolute, then our fairness measure will be 

( ) ( )( ) ( )∫ −+= ,
2

dttetntcE ρ assuming that the two curves have a 

common parameterization. The algorithm for finding the minimum of 

this functional will be presented later. Controlling the deviation from 

the original curve can be managed by the convex hull property, as in 

the Eck-Hadenfeld algorithm. 

Since the evolute (and the curvature comb) may be self-

intersecting, we use directly the curvatures instead, so our measure 

becomes ( ) ( )∑ −=
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κ where g is the target curvature. 

In the surface case the curvature is replaced by the principal 

curvatures. Let g1 and g2 be the target curvatures based on κ1 and κ2, 

then ( ) ( ) ( ) ( )∑∑ 
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meaningful fairness measure. 

3.1. Determining the Target Curvature 

Any simple and fast smoothing method can be effectively used for 

defining the target curvature, e.g. averaging consecutive sampled 

points of the evolute. Global averaging can remove parts of the 

curvature that represent features, so the user should be allowed to 

restrict the smoothing or edit the target curvature manually. 

Another possibility is to fit a NURBS curve over the sampled 

points. For surfaces this means fitting surfaces over the points of the 

target curvatures. To get smooth results, we should also minimize the 

curvature of the fitted surface. 

3.2. An Iterative Algorithm 

Our first algorithm is local in the sense that it moves one control point 

at a time. As most iterative methods, it has a drawback of speed, 

which we tried to counter by using the relatively fast downhill 

simplex method [5]. In every iteration we select a control point and 

move it to a position where the fairness measure is at a local 

minimum. 

Selection of the next control point has great influence on the 

quality of fairness. Selecting the control point where the largest 

deviation of the target curvature occurs is a natural choice. However, 

this can lead to a deadlock, if the same control point is chosen over 

and over again. A list of the recently moved control points may be 

kept in order to avoid this. Also, boundary control points should not 

be selected for most applications. 

3.3. Integration Method 

The main idea is that the curvature of a curve is the same as the length 

of the second derivative in arc-length parameterization, so we can 

take the target curvatures as second derivatives and integrate twice to 

get the faired curve. 

First we create a pseudo arc-length parameterization by sampling 

points at equal distances, then use a discrete integration method like 

the Euler or Runge-Kutta algorithms, starting from both sides of the 

curves, resulting in two sets of points. Starting point and normal data 

is extracted from the original curve. To control the deviation, we add 

an extra term to the integration equations that “pulls back” the curve 

towards the original. Finally we blend the two set together with a 

suitable blending function, and fit a curve over the blended points. 

The algorithm can be extended to surfaces by first fairing u and v 

isocurves of the surface using the above integration method, then 

fitting a surface over the blended points. 

4. Conclusions 

Fairing curves and surfaces is a complex problem. Unfortunately, the 

goal of generating perfectly fair shapes cannot be unambiguously 

formulated with mathematical terms, and there are many alternatives. 

Authors propose a method where a smoothed target curvature 

function is approximated either by a local iterative algorithm or by a 

direct method involving discrete integration and fitting. Figures 1-4 

show some results. Our future research will focus on fairing multiple 

surfaces together while preserving or enhancing the continuity 

between them. 
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Figure 1. Isophotes of the extrusion surfaces of a curve before (left) 

and after (right) fairing by the iterative method. 

Figure 2. Isophotes of a Fiat body part before (top) and after (bottom) 

fairing using the iterative method. 

Figure 3. Isophotes of the extrusion surface of a curve before fairing 

(top left) and after fairing by the integration method with tight (top 

right), medium (bottom left) and loose (bottom right) tolerances. 

 

Figure 4. Mean map of a Fiat body part before (left) and after (right) 

local fairing on the center region using the integration method. 


