
Fast and Local Fairing of B-Spline Curves and
Surfaces

P. Salvi†, H. Suzuki†, T. Várady‡

† University of Tokyo, ‡ Geomagic Hungary

Abstract. The paper proposes a fast fairing algorithm for curves and
surfaces. It �rst de�nes a base algorithm for fairing curves, which is
then extended to the surface case, where the isocurves of the surface are
faired. The curve fairing process involves the discrete integration of a
pseudo-arc-length parameterization of B-spline curves, with a blending
and �tting phase concluding the algorithm. In the core of the fairing
method, there is a fairness measure introduced in an earlier paper of the
authors. This measure is based on the deviation from an ideal or target
curvature. A target curvature is a series of smooth curvature values, ge-
nerated from the original curve or surface. This curve and surface fairing
technique is local and semi-automatic, but the user can also designate
the region to be faired. The results are illustrated by a few examples on
real-life models.

Key words: Curves and Surfaces, Geometric Optimization, Reverse En-
gineering

1 Introduction

Fairing curves and surfaces plays an important role in CAGD, especially in the
automobile industry. Connected curve nets and surfaces have to be smoothed
while preserving their original features and connectivity. Automating this process
is a crucial problem of Digital Shape Reconstruction1 [3].

Fairness does not have an exact mathematical de�nition, and it may have a
di�erent meaning depending on the context [9]. Still, there are some common
properties of what we would call fair. It certainly includes some kind of ma-
thematical continuity, e.g. C2 or G2. It also incorporates the requirement that
a surface should have even re�ections. Another important, although less intu-
itive, requirement is the smooth transition of curvature [6]. These properties can
be tested using an arsenal of interrogation methods, e.g. isophote lines, curva-
ture combs or curvature maps. But even with these, �nding and mending small
artifacts is a laborious manual process.

The concept of target curvature and an iterative algorithm based on it is re-
viewed in Section 2. A new, fast algorithm is explained in Section 3, accompanied
by test results in Section 4.
1 formerly called Reverse Engineering.

(a) Curve with curvature comb (b) The same curve with the target
curvature comb.

Fig. 1. Target curvature of a cubic curve.

2 Related Work

There is an abundant literature on creating fair curves and surfaces, dealing
with both the de�nition of fairness and smoothing algorithms. Here we will only
cover a previous publication of the authors, de�ning a fairness measure based on
a target curvature. The algorithm in Section 3 will use this measure to generate
fair curves and surfaces. This section also presents an iterative algorithm based
on the same measure. For a more comprehensive review on fairness measures
and algorithms, look at [9,10].

2.1 Fairness Measure
Most fairing algorithms use some kind of fairness measure as a numerical rep-
resentation of smoothness. In other words, we can say that a curve c is fair,
if

F(c) < τ

applies, where τ is a user-de�ned tolerance. Salvi and Várady [10] propose a
measure based on a target curvature � a su�ciently smoothed series of sampled
curvature values. It can be thought of as a smoothed curvature comb (Fig. 1).
From the target curvature, a new fairness measure naturally arises for curves:

E =
∑

i

|κ(ti)− g(ti)|2,

where g is the smoothed (target) curvature and ti are sampled parameter points.
The de�nition means that the less a curve's curvature deviates from the target
curvature, the more fair it is. This measure is parameterization-independent,
since it uses the curvature, that is a geometrical property of the curve. Most
smoothness measures in use today are parameterization-dependent, and thus
cannot be used safely when the parameterization considerably deviates from the
arc-length parameterization [5].

Determining the Target Curvature For creating the target curvature, sim-
ple, fast algorithms can be used. One way is averaging consecutive sampled
values of the curvature. As global averaging may remove or �atten important
parts of the curvature, the user should be allowed to modify the target curvature
manually, or restrict its changes.

Another possibility is to �t a curve over sampled values of the curvature
(�tting over curvature comb endpoints would be more intuitive, but it may have
self-intersections). For smoother results, we may also minimize the curvature of
the �tted curve. This leads to the minimization of the functional

F (g) =
∑

i

|g(ti)− κ(ti)|2 +
∫

κ̂,

where κ̂ is the curvature of the �tted curve g.
For both of these methods, the number of samples may have a great impact

on the resulting target curvature. Since smoothness is much more important than
faithfulness to the original curvature, a loose sampling rate is recommended.

Extension to Surfaces Most fairness measures for curves have their surface
counterparts. This measure is no exception: it can be logically applied to surfaces
using some combination of the principal curvatures, e.g.:

Π =
∑

i

∑

j

(|κ1(ui, vj)− g1(ui, vj)|2 + |κ2(ui, vj)− g2(ui, vj)|2).

2.2 An Iterative Algorithm
The algorithm presented by the authors in [10] �xes all but one control point
and minimizes the fairness measure de�ned above by moving the remaining
one. It also constrains the deviation from the original curve using its control
polygon. One may apply various heuristics to �nd the overall optimal shape,
e.g. moving the control point with the largest error in every turn. Although not
mentioned in the original paper, the downhill simplex method [8] can be used for
minimization, and checking the deviation of a suitable neighbourhood instead of
the whole domain can speed up the calculation of the fairness measure as well.
Its extension to the surface case is straightforward; a sample result is presented
in Fig. 2.

3 The Proposed Algorithm
The main idea is that if we reparameterize a curve to arc-length parameteri-
zation, the curvature will be equal to the norm of the second derivative [5], so
we can create a target curvature and integrate it twice to �nd the faired curve
directly. Discrete integration provides us with points we can use for �tting, even-
tually resulting in a faired curve or surface. The use of �tting harms locality of
course, but in exchange we get a great increase in speed. In the following sections
we �rst de�ne the algorithm for curves and then extend it to surfaces.

Fig. 2. Fiat body part faired by a previous algorithm of the authors [10].

3.1 Curve Case

The algorithm can be broken down to the following four phases:

1. Creating a pseudo arc-length parameterization for n points.
2. Integrating twice starting at the left end to the right and vice versa, with

deviation control.
3. Blending the results.
4. Fitting a spline that approximates the blended points.

Pseudo arc-length parameterization means that the parameter domain is divided
into n−1 small segments that have approximately equal length. At these points
the curvature is the same as the norm of the second parametric derivative of the
curve in arc-length parameterization, i.e. when the same distance in parameter
space means the same distance in arc length. We will denote the parameter of
the kth point with pk.

The second phase is carried out both from the left and from the right side.
Since these are symmetrical, we examine only the former. The numerical inte-
gration algorithm needs the direction of the second derivative, as well as the
starting point. In arc-length parameterization the second derivative is in the
normal direction, which can be easily calculated. In the �rst integration step we
should approximate the �rst derivative at the starting point of the curve in an
arc-length parametric sense, i.e. f̂ ′(0) = f(p1)−f(p0)

h , where h = length(p0, pn−1)
n−1 , f

denotes the actual, f̂ the arc-length parameteric representation of the curve, and
the function length(pi, pj) gives the length of the curve in the interval [pi, pj].
In the second integration step, we can use the coordinate of the original curve:
f̂(0) = f(p0).

The Euler method is the simplest numerical integration algorithm, and even
this produces good results. The equation for the �rst step is

f̂ ′(x + h) = f̂ ′(x) + hf̂ ′′(x),

and for the second step:

f̂(x + h) = f̂(x) + hf̂ ′(x).

The second-order Runge�Kutta method uses a midpoint for better approxi-
mation. Let n = 4k, then for the �rst step the equation is

f̂ ′(x + 2h) = f̂ ′(x) + 2hf̂ ′′(x + h),

and for the second step:

f̂(x + 4h) = f̂(x) + 4hf̂ ′(x + 2h).

In both cases, we need to control the deviation

Fig. 3. Maximum devia-
tion band around a curve.

from the original curve. This can be achieved by
adding an extra term c(x) to the equations, that
pulls back the points when they get too close to
a user-de�ned deviation tolerance. Imagine a band
around the original curve with the tolerance as its
breadth (Fig. 3). If the integrated curve gets close
to the border of the band, it will be turned towards
the middle.

c(x) = min

[
1,

(|d|
m

)2
]
· d,

where d = f(x)− f̂(x) and m is the prede�ned tolerance.
In the third phase we apply a blending function to the two curves (integrated

from the left and right side, respectively). We can use a suitable blending func-
tion2, e.g. the Hermite blending function λ(t) = 3t2 − 2t3, or the 5th-degree
polynomial λ(t) = 6t5 − 15t4 + 10t3, so the blended points will be of the form

g(x) = (1− λ(t))f̂left(x) + λ(t)f̂right(x),

where t = x
length(p0, pn−1)

.
Finally, an approximating spline is computed by �tting a least-squares B-

spline over the points [7]. Usually the original knot vector can be passed to the
�tting algorithm, and (e.g. curvature minimizing) smoothing terms can also be
employed in the �tting process.
2 A suitable blending function λ(t) has the following properties: (i) λ(0) = 0 and

λ(1) = 1 (ii) λ(k)(0) = 0 and λ(k)(1) = 0 for some k = 1

3.2 Surface Case

We can use the curve fairing method to fair individual isocurves of the surface.
Let the B-spline surface be given in the form

S(u, v) =
n∑

i=0

m∑

j=0

dijN
U
i,k(u)NV

j,l(v),

(u, v) ∈ [uk−1, un+1]× [vl−1, vm+1],

where U = (ui)n+k
i=0 and V = (vj)m+l

j=0 represent the knot vectors. Then the
u-isocurve for a �xed v parameter can be written as

Cv(u) =
n∑

i=0

m∑

j=0

NV
j,l(v)dij

NU

i,k(u),

i.e. a B-spline curve with the same knot vector U , and with control points∑m
j=0 NV

j,l(v)dij . We can apply steps 1�3 of the curve fairing method to get
the faired points. These points can be collected to form two point clouds (one
from the u-parametric and one from the v-parametric curves). Blending them
and �tting a surface on the blended point set will result in a fair surface.

4 Test Results

Figure 4 shows a curve before and after fairing, using three di�erent tolerances.
We can see that fairness comes in exchange for a larger deviation. The change in
fairness is more visible on the extrusion surfaces � the wiggles in the isophote
lines are reduced in the tight and medium tolerance case, and totally smoothed
out with loose tolerance.

Figure 5 shows local fairing on a Fiat body part. The region on the right was
selected for fairing, and the curvature became much more smooth as a result.
Other regions were not a�ected (substantially).

Conclusions

A fast and local algorithm was introduced for both curve and surface fairing.
It uses a parameterization-independent fairness measure based on a target cur-
vature. E�ectiveness is achieved by integration and �tting instead of iteration.
User interaction may be necessary, but minimal. Our future research will be the
fairing of multiple curves / surfaces together, while preserving or enhancing the
continuity between them.

(a) Original: red; tight: blue; medium: green; loose: black.

(b) Isophotes of the extrusion surfaces.

Fig. 4. Fairing a curve with tight, medium and loose tolerance.

(a) Isophote map.

(b) Mean map.

Fig. 5. Local fairing of a Fiat body part.

References
1. M. Eck, J. Hadenfeld, Local Energy Fairing of B-Spline Curves. Computing Sup-

plement 10, pp. 129-147, 1995.
2. G. Farin, Curves and Surfaces for Computer Aided Geometric Design. A Practical

Guide. Academic Press, 5th Edition, 2002.
3. G. Farin, J. Hoschek, M.-S. Kim (Eds), Handbook of Computer Aided Geometric

Design. North-Holland, 2002.
4. S. Hahmann, S. Konz, Knot-Removal Surface Fairing Using Search Strategies.

Computer Aided Design 30, pp. 131-138, 1998.
5. E. T. Y. Lee, Energy, fairness, and a counterexample. Computer Aided Design

22(1), pp. 37-40, 1990.
6. H. P. Moreton, C. H. Séquin, Minimum Variation Curves and Surfaces for

Computer-Aided Geometric Design. In: N. S. Sapidis (Ed.), Designing Fair Curves
and Surfaces, pp. 123-159, SIAM, 1994.

7. L. Piegl, W. Tiller, The NURBS Book, Springer, 2nd Edition, 1997.

8. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes
in C. Cambridge University Press, 2nd Edition, 1992.

9. J. Roulier, T. Rando, Measures of Fairness for Curves and Surfaces. In: N. S. Sa-
pidis (Ed.), Designing Fair Curves and Surfaces, pp. 75-122, SIAM, 1994.

10. P. Salvi, T. Várady, Local Fairing of Freeform Curves and Surfaces. In: Proceedings
of the Third Hungarian Graphics and Geometry Conference, 2005.

