Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00

Ribbon-based Transfinite Surfaces

Péter Salvi[†], Tamás Várady[†], Alyn Rockwood[‡]

[†]Budapest University of Technology and Economics [‡]King Abdullah University of Science and Technology

CAGD 31(9), pp. 613–630, 2014. GMP 2015

Transfinite Surface Interpolation	New Representations	Results	Conclusion

Outline

Introduction

- Curvenet-based Design
- Coons Patches
- 2 Transfinite Surface Interpolation
 - Ribbons
 - Domain Polygons
 - Parameterizations
 - Simple Parameterizations
 - Constrained Parameterizations
 - Blending Functions
- 3 New Representations
 - Generalized Coons Patch
 - Composite Ribbon Patch

Results

P. Salvi, T. Várady, A. Rockwood

Introduction •00000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion
Curvenet-based Design				

Motivation

- Free-form surface design based on feature curves
- Hand-drawn sketches or images as input
- Tools for 3D curve / cross-derivative generation
- Semi-automatically generated surfaces
- Key issue: *n*-sided surface representation

Introduction		New Representations	Conclusion
00000			
Curvenet-based Desigr	1		

Conventional Surfacing Methods

• Trimming

- Defining the quadrilateral?
- Boundary modification?
- Stitching?
- Quadrilaterals
 - Creating smooth divisions?
 - Modification effect on the dividing curves?
- Recursive subdivision
 - Initial polyhedra?
 - Cross-derivative constraints?

Introduction	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Curvenet-based Design				

Transfinite Surface Interpolation

- Avoid dealing with control points or polyhedra
- No need for interior data
- Exact boundary interpolation
- Real-time editing of complex free-form models
- Smooth connections
- Previous work:
 - Coons '67
 - Charrot–Gregory '84
 - Kato '91
 - Sabin '96 etc.

P. Salvi, T. Várady, A. Rockwood Ribbon-based Transfinite Surfaces

Introduction	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion
Coons Patches				

C^1 Coons Patch

- Boundary curves: *S*(*u*,0), *S*(*u*,1), *S*(0,*v*), *S*(1,*v*)
- Cross-derivatives:
 S_v(u, 0), S_v(u, 1), S_u(0, v), S_u(1, v)
- Hermite blends: α_0 , α_1 , β_0 , β_1

$$U = \begin{bmatrix} \alpha_{0}(u) & \beta_{0}(u) & \alpha_{1}(u) & \beta_{1}(u) \end{bmatrix}$$

$$V = \begin{bmatrix} \alpha_{0}(v) & \beta_{0}(v) & \alpha_{1}(v) & \beta_{1}(v) \end{bmatrix}$$

$$S^{u} = \begin{bmatrix} S(u,0) & S_{v}(u,0) & S(u,1) & S_{v}(u,1) \end{bmatrix}$$

$$S^{v} = \begin{bmatrix} S(0,v) & S_{u}(0,v) & S(1,v) & S_{u}(1,v) \end{bmatrix}$$

$$S^{uv} = \begin{bmatrix} S(0,0) & S_{u}(0,0) & S(1,0) & S_{u}(1,0) \\ S_{v}(0,0) & S_{uv}(0,0) & S_{v}(1,0) & S_{uv}(1,0) \\ S(0,1) & S_{u}(0,1) & S(1,1) & S_{u}(1,1) \\ S_{v}(0,1) & S_{uv}(0,1) & S_{v}(1,1) & S_{uv}(1,1) \end{bmatrix}$$

$$S(u,v) = V(S^{u})^{T} + S^{v}U^{T} - VS^{uv}U^{T}$$

P. Salvi, T. Várady, A. Rockwood Ribbon-based Transfinite Surfaces

Introduction ○○○○●○	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Coons Patches				

Reformulation

- Positional and tangential constraints: P_i(s_i) and T_i(s_i)
- Assume compatible twists: $W_{i,i-1} = T'_i(0) = -T'_{i-1}(1)$

$$S(u, v) = \sum_{i=1}^{4} \begin{bmatrix} \alpha_0(s_{i+1}) \\ \beta_0(s_{i+1}) \end{bmatrix}^T \begin{bmatrix} P_i(s_i) \\ T_i(s_i) \end{bmatrix} - \sum_{i=1}^{4} \begin{bmatrix} \alpha_0(s_{i+1}) \\ \beta_0(s_{i+1}) \end{bmatrix}^T \begin{bmatrix} P_i(0) & P'_i(0) \\ T_i(0) & T'_i(0) \end{bmatrix} \begin{bmatrix} \alpha_0(s_i) \\ \beta_0(s_i) \end{bmatrix}$$

Introduction ○○○○○●	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion
Coons Patches				
Ribbon-b	ased Coons Patch			
• Linea $R_i(s_i)$ • $\gamma(d_i)$ • Dista • Corna $Q_{i,i-1}$	ar interpolants (ribbons): $d_i = P_i(s_i) + \gamma(d_i)T_i(s_i)$ $d_i = \beta_0(d_i)/\alpha_0(d_i) = \frac{d_i}{2d_i+1}$ ance parameter $d_i = s_{i+1}$ for correction patch $a_1(s_i, s_{i-1}) = b_i$		P _{i+1}	d _i

$$P_{i}(0) + \gamma(1 - s_{i-1})T_{i}(0) + \gamma(s_{i})T_{i-1}(1) + \gamma(s_{i})\gamma(1 - s_{i-1})W_{i,i-1}$$

$$P_{i-1} \qquad P_{i-1} \qquad P_{$$

	Transfinite Surface Interpolation	New Representations	Results	Conclusion
	0000000000			
Overview				

Transfinite Surface Interpolation

- Input: Hermite data (P_i, T_i)
- Surface S(u, v) =

$$\sum_{i=1}^{n} \operatorname{Interpolant}_{i}(s_{i}, d_{i}) \cdot \operatorname{Blend}_{i}(d_{1}, \dots, d_{n})$$

Constituents

- Ribbons
- Domain polygon

- Parameterization functions
- Blending functions

	Transfinite Surface Interpolation	New Representations	Conclusion
	0000000000		
Ribbons			

Ribbon Construction

• Given: boundary curves $P_i(s_i)$ and normal vectors at some points

• $T_i(s_i) \perp N_i(s_i)$

P. Salvi, T. Várady, A. Rockwood Ribbon-based Transfinite Surfaces Continuous normal vector function N_i(s_i) by RMF

Resulting surface

BME & KAUST

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Domain Polygons				

Domain Construction

- Regular *n*-sided polygon (good most of the time)
- Domain "similar" to the boundary curves
- Similarity of...
 - Arc lengths
 - Angles
- Measure of similarity:
 - Deviation of arc length / angle ratios
- Use heuristics if measure > threshold

	Transfinite Surface Interpolation	New Representations	Conclusion
	0000000000		
Development and in the			

Parameterizations

Ribbon Mapping – Parameterization Constraints

- *s_i* ∈ [0, 1]
- For a point on side *i*...
 - Simple parameterization:

$$d_i = 0$$

 $s_{i-1} = 1$ $s_{i+1} = 0$
 $d_{i-1} = s_i$ $d_{i+1} = 1 - s_i$

• Constrained parameterization:

$$\frac{\partial d_{i-1}}{\partial u} = \frac{\partial s_i}{\partial u} \qquad \frac{\partial d_{i-1}}{\partial v} = \frac{\partial s_i}{\partial v}$$
$$\frac{\partial d_{i+1}}{\partial u} = -\frac{\partial s_i}{\partial u} \qquad \frac{\partial d_{i+1}}{\partial v} = -\frac{\partial s_i}{\partial v}$$

Introduction 000000 Transfinite Surface Interpolation

New Representation

Results

Conclusion 00

Parameterizations

Bilinear Line Sweep (simple)

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion
Parameterizations				

Wachspress Distance Parameters (simple)

- For convex polygons
- $\lambda_i(u, v) = w_i(u, v) / \sum_k w_k(u, v)$
- $w_i(u, v) = C_i/(A_{i-1}(u, v) \cdot A_i(u, v))$
- \Rightarrow $d_i(u, v) =$ $1 - \lambda_{i-1}(u, v) - \lambda_i(u, v)$

	Transfinite Surface Interpolation	New Representations	Conclusion
	0000000000		
Parameterizations			

Interconnected Parameterization (constrained)

• Let $s_i(u, v)$ be a line sweep (e.g. bilinear) $d_i(u, v) = (1 - s_{i-1}(u, v)) \cdot \alpha_0(s_i) + s_{i+1}(u, v) \cdot \alpha_1(s_i)$

000000	

Transfinite Surface Interpolation

New Representation

Results 0000 Conclusion

Parameterizations

Cubic Parameterization (constrained)

- Based on bilinear
- Constant parameter lines defined by cubic Bézier curves
- λ : fullness parameter
- Leads to a sixth-degree equation
 - Only fourth-degree when $\lambda=\frac{1}{3}$
 - Precomputable

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Parameterizations				

Example

• Using $\lambda = \frac{1}{3}$:

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Parameterizations				

Example

• Using
$$\lambda = \frac{1}{2}$$
:

	Transfinite Surface Interpolation	New Representations	Results	Conclusion
	00000000000			
Blending Functions				

Blending Side Interpolants \Rightarrow SB Patch

"Side-based" (SB) patch [Kato '91]

$$S^{SB}(u,v) = \sum_{i=1}^n R_i(s_i,d_i) \cdot B_i^*(d_1,\ldots,d_n)$$

$$B_i^*(d_1,...,d_n) = rac{1/d_i^2}{\sum_j 1/d_j^2} = rac{\prod_{k
eq i} d_k^2}{\sum_j \prod_{k
eq j} d_k^2}$$

• Blend function singular in the corners

Transfinite Surface Interpolation	New Representations	Conclusi
0000000000		

Blending Functions

Blending Corner Interpolants \Rightarrow CB Patch

"Corner-based" (CB) patch
[Charrot-Gregory '84]

$$S^{CB}(u,v) = \sum_{i=1}^{n} R_{i,i-1}(s_i, s_{i-1}) \cdot B_{i,i-1}(d_1, \dots, d_n)$$

$$B_{i,i-1}(d_1, \dots, d_n) = \frac{\prod_{k \notin \{i,i-1\}} d_k^2}{\sum_j \prod_{k \notin \{j,j-1\}} d_k^2}$$
• Corner interpolants:

Introduction

Fransfinite Surface Interpolation

New Representations $\bullet \circ \circ$

esults

Conclusion

Generalized Coons Patch

GC Patch – Boolean Sum Construction

- Same logic as in the reformulated Coons patch
- Side blend: $B_i = B_{i,i-1} + B_{i+1,i}$
- Needs constrained parameterization

$$S(u, v) = \sum_{i=1}^{n} R_i(s_i, d_i) \cdot B_i(d_1, \dots, d_n) - \sum_{i=1}^{n} Q_{i,i-1}(s_i, s_{i-1}) \cdot B_{i,i-1}(d_1, \dots, d_n)$$

Ribbon-based Transfinite Surfaces

BME & KAUST

		New Representations	Conclusion
		000	
C D'LL	Detel		

CR Patch – Ribbons Interpolating 3 Sides

• Curved side interpolants

$$C_{i}(s,d) = R_{i}(s,d)\alpha_{0}(d) + R_{i}^{i}(s,d)\alpha_{0}(s) + R_{i}^{r}(s,d)\alpha_{1}(s) - Q_{i}^{i}(s,d)\alpha_{0}(s)\alpha_{0}(d) - Q_{i}^{r}(s,d)\alpha_{1}(s)\alpha_{0}(d) - R_{i}^{i}(s,d) = R_{i-1}(1-d,s)$$

$$R_{i}^{i}(s,d) = R_{i+1}(d,1-s)$$

$$Q_{i}^{i}(s,d) = Q_{i,i-1}(s,1-d)$$

$$Q_{i}^{r}(s,d) = Q_{i+1,i}(d,s)$$

.----.

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion 00
Composite Ribbon Pate	ch			

CR Patch – Simpler Equation

• No need for correction patches:

$$S(u, v) = \frac{1}{2} \sum_{i=1}^{n} C_i(s_i, d_i) B_i(d_1, \dots, d_n)$$

(Correction patches are *inside* curved ribbons)

- Simple parameterization \Rightarrow reproduces tangent planes
- Constrained parameterization \Rightarrow reproduces first derivatives

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results ●000	Conclusion
Examples				

Mean Map Comparison

Introduction 000000 Examples Fransfinite Surface Interpolation

New Representation

Results 0000 Conclusion

Approximating a Sphere (CR)

	Min	Max	Average	Std. Deviation
SB	0.9963	1.0098	1.0040	3.41e-3
CB	0.9942	1.0082	0.9990	3.13e-3
GC	0.9960	1.0082	1.0014	3.02e-3
CR	0.9960	1.0057	1.0007	2.77e-3

Radii

ntroduction	Transfinite Surface Interpolation	New Representations	Results 00●0	Conclusion 00
Examples				

Stability (CR)

P. Salvi, T. Várady, A. Rockwood Ribbon-based Transfinite Surfaces

Examples

ransfinite Surface Interpolation

New Representations

Results 000● ____ Conclusion

A Complex Model

P. Salvi, T. Várady, A. Rockwood Ribbon-based Transfinite Surfaces BME & KAUST

Introduction 000000	Transfinite Surface Interpolation	New Representations	Results 0000	Conclusion ●0
Conclusion				

Summary

- Constrained parameterizations
 - Interconnected
 - Cubic
- Coons patch generalization
- Composite ribbon patch
 - Curved ribbons
- Future work
 - G² patches (Salvi et al. PG'14)
 - Concave domains
 - Fairing algorithms

	New Representations	Results	Conclusion
			00
Conclusion			

Thank you for your attention.

