Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work

Enhancement of a multi-sided Bézier surface representation

Tamás Várady, Péter Salvi, István Kovács

Budapest University of Technology and Economics

CAGD 55, pp. 69–83, 2017. GMP 2018

Introduction	Generalized Bézier (GB) patch	Enhancements	Examples	Conclusion and future work

Outline

- Introduction

 Motivation
 Previous work

 Generalized Bézier (GB) patch

 Control structure
 Domain & parameterization
 - Blending functions
- 3 Enhancements
 - Problems
 - New algorithms
- 4 Examples
- 5 Conclusion and future work

T. Várady, P. Salvi, I. Kovács Enhancement of a multi-sided Bézier surface representation

Introduction ●○○	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work
Motivation				

Applications of multi-sided patches

- Curve network based design
 - Feature curves
 - Automatic surface generation
- Hole filling
 - E.g. vertex blends
 - Cross-derivative constraints
- 3D point cloud approximation
 - Given boundary loops
 - Smoothly connected patches

Representation?

Introduction ○●○	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work
Motivation				

Conventional representations

- Trimmed/split tensor product surfaces
 - Detailed control in the interior
 - CAD-compatible
 - But: continuity problems
- Recursive subdivision
 - Arbitrary topology
 - Easy to design with
 - But: hard to interpolate boundary cross-derivatives
- Transfinite patches
 - Interpolates any number of sides
 - Depends only on the boundary
 - But: little interior control

T. Várady, P. Salvi, I. Kovács

Introduction ○○●	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work
Previous work				

Multi-sided surfaces with control networks

- Loop and DeRose (1989)
 - S-patches beautiful theory, difficult to use
- Warren (1992)
 - Based on Bézier triangles, max. 6 sides
- Zheng and Ball (1997)
 - High-degree expressions, max. 6 sides
- Krasauskas (2002)
 - Toric patches lattice-based, symmetry concerns
- Várady et al. (2016)
 - Generalized Bézier patches
 - Regular polygonal domain
 - Symmetric control structure

Introduction	Generalized Bézier (GB) patch	Enhancements	Examples	Conclusion and future work
	00000			
Control structu	ire			

Control net derivation from the quadrilateral case

- Control grid \rightarrow *n* ribbons
- Degree: d
- Layers: $I = \left\lfloor \frac{d+1}{2} \right\rfloor$
- Control points:
 - $C_{j,k}^{d,i}$
 - *i* = 1...*n j* = 0...*d*
 - $k = 0 \dots l 1$
- Weights: $\mu_{j,k}^i$

T. Várady, P. Salvi, I. Kovács

Introduction 000	Generalized Bézier (GB) patch ○●○○○○	Enhancements 0000000	Examples 0000	Conclusion and future work	
Domain & parameterization					
_					

Domain

- Regular domain in the (u, v) plane
- Side-based local parameterization functions s_i and h_i
 - Based on Wachspress barycentric coordinates $\lambda_i(u, v)$

Introduction	Generalized Bézier (GB) patch ○○●○○○	Enhancements 0000000	Examples 0000	Conclusion and future work
Domain & parameterization				

Local parameters

•
$$s_i = \frac{\lambda_i}{\lambda_{i-1} + \lambda_i}$$

•
$$h_i = 1 - \lambda_{i-1} - \lambda_i$$

Barycentric coordinates λ_i

- $\lambda_i \ge 0$ [positivity]
- $\sum_{i=1}^{n} \lambda_i = 1$ [partition of unity]
- $\sum_{i=1}^{n} \lambda_i(u, v) \cdot P_i = (u, v)$ [reproduction]
- $\lambda_i(P_j) = \delta_{ij}$ [Lagrange property]

Introduction	Generalized Bézier (GB) patch ○○●○○	Enhancements 0000000	Examples 0000	Conclusion and future work
Blending functions				

Bernstein functions with rational weights

- $C_{j,k}^{d,i}$: *j*-th control point on side *i*, layer *k*
- Multiplied by $\mu^i_{j,k}B^d_{j,k}(s_i,h_i) = \mu^i_{j,k}B^d_j(s_i)B^d_k(h_i)$
- $\mu^i_{i,k}$ is a rational function for 2 \times 2 CPs in each corner
- $\alpha_i = h_{i-1}/(h_{i-1} + h_i), \ \beta_i = h_{i+1}/(h_{i+1} + h_i)$

Introduction	Generalized Bézier (GB) patch ○○○○●○	Enhancements 0000000	Examples 0000	Conclusion and future work	
Blending functions					

Central weight & patch equation

- Weights do not add up to 1
- Deficiency \Rightarrow weight of the central point:

$$B_0^d(u, v) = 1 - \sum_{i=1}^n \sum_{j=0}^d \sum_{k=0}^{l-1} \mu_{j,k}^i B_{j,k}^d(s_i, h_i)$$

• Patch equation:

$$S(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{d} \sum_{k=0}^{l-1} C_{j,k}^{d,i} \mu_{j,k}^{i} B_{j,k}^{d}(s_{i},h_{i}) + C_{0}^{d} B_{0}^{d}(u,v)$$

Introduction	Generalized Bézier (GB) patch	Enhancements	Examples	Conclusion and future work
	000000			

Interpolation property

Definition

A Bézier ribbon is a Bézier patch given by the first two layers (rows) of control points on a given side.

Theorem

The Generalized Bézier patch, on its boundary, interpolates the position and first crossderivative of the Bézier ribbons of its respective sides.

Introduction	Generalized Bézier (GB) patch	Enhancements	Examples	Conclusion and future work
		000000		

Overview

Fixed issues

- Weight deficiency
 - Increases with n and $d \Rightarrow$ Influence of the central control point grows
 - Strongly oscillates between even and odd degrees
- Support for G^2 continuity between patches

New/updated algorithms

- Degree elevation & reduction
- Fullness control
- Approximation of point clouds

Introduction	Generalized Bézier (GB) patch	Enhancements ○●00000	Examples 0000	Conclusion and future work
Problems				

Weight deficiency

- No central control point for odd-degree patches
- For even-degree patches: $C_{l,l}^d \cdot \sum_{i=1}^n \mu_{l,i}^i B_{l,l}^d(s_i, h_i)$
- Weight deficiency is distributed amongst the innermost blend functions

Introduction	Generalized Bézier (GB) patch	Enhancements ○0●0000	Examples 0000	Conclusion and future work
Problems				

New parameterization

- Better isoline distribution
- Lower weight deficiency
- Constraints:
 - $h_i = 0.5$ tangential to s_{i-1} and s_{i+1}
 - Middle point on a circular arc

 $V_{i^{\pm 3}}$

Introduction 000	Generalized Bézier (GB) patch	Enhancements ○00●000	Examples 0000	Conclusion and future work
Problems				
G^2 cont	inuity			

• Use squared terms in the rational weights:

Introduction	Generalized Bézier (GB) patch	Enhancements ○○○○●○○	Examples 0000	Conclusion and future work
New algorithms				

Degree elevation & reduction

- Essentially the same as in the original paper
- Linear and bilinear combinations
- Modifies the surface (slightly)
- The control net is generated by reductions and elevations
 - Default positions for internal control points

Introduction 000	Generalized Bézier (GB) patch	Enhancements ○○○○●○	Examples 0000	Conclusion and future work
New algorithms				

Fullness control

- Multi-resolution editing technique
- Edit a control point of a lower-degree patch
 - E.g. quartic central point
- Its influence is propagated by degree elevation

Introduction	Generalized Bézier (GB) patch	Enhancements ○○○○○●	Examples 0000	Conclusion and future work
New algorithms				

Approximation

- Least-squares fit of points
- Initial surface
 - Generated by the boundary constraints
- Initial parameterization
 - Projection
- Iteration:
 - Fit with smoothing
 - Degree elevation
 - Re-parameterization
- Smoothing
 - Reduce oscillation of the control points

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples ●000	Conclusion and future work
Example 1				

Torso

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0●00	Conclusion and future work
Example 1				

Torso – detail

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples ○○●○	Conclusion and future work
Example 2				

Gamepad

T. Várady, P. Salvi, I. Kovács Enhancement of a multi-sided Bézier surface representation

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples ○○○●	Conclusion and future work
Example 2				

Gamepad – detail

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work ●○○
Conclusion				

Summary

Generalized Bézier patches

- Side-based interpretation
- All control points generated by the boundaries via degree elevation
- Interior control

Enhancements

- Follow the quadrilateral patch more closely
- Central control point / weight deficiency fixed
- Better parameterization
- Curvature continuity
- Approximation algorithm

Introduction	Generalized Bézier (GB) patch	Enhancements 0000000	Examples 0000	Conclusion and future work ○●○
Future work				

Patches over concave domains

T. Várady, P. Salvi, I. Kovács <u>Enhancement o</u>f a multi-sided Bézier surface representation

Introduction	Generalized Bézier (GB) patch	Enhancements	Examples	Conclusion and future work
				000

Any questions?

Thank you for your attention.

