
Programming for Hedgehogs

Péter Salvi

Budapest University of Technology and Economics

2021

Abstract

In this paper I argue that in spite of the con-

stant evolution of programming languages and

the emergence of new paradigms, homoiconic

metaprogramming is the only feature that is

needed in a language to cater for the changing

needs of the programming community. This is

also a good excuse for writing a Lisp tutorial.

Introduction

‘ The fox knows many things, but the

hedgehog knows one big thing.’
†

Lisp

knows one big thing: homoiconicity, i.e.,

the fact that program code is valid data,

through symbolic programming. This en-

ables the use of advanced metaprogram-

ming techniques, where the language can

be extended through ordinary libraries.

In other words, the expressive power of

Lisp is virtually unbounded. Here I do

not mean the theoretical expressivity of the

language, which is the same as for lambda

calculus or combinatorical logic,
7

or even

some simple cellular automata.
14

That

†
‘πόλλ᾿ οἶδ᾿ ἀλώπηξ, ἀλλ᾿ ἐχῖνος ἓν µέγα.’—a frag-

ment from the Greek poet Archilochus, made fa-

mous by the classic essay of Isaiah Berlin.
3

The

title of this paper echoes ‘Justice for Hedgehogs’,

a wonderful book on the unity of value by Ronald

Dworkin.
4

definition would just lead us to the “ Turing

tar-pit”.
12

There is a practical sense of expressive-

ness concerned with whether a wide range

of problems can be solved in a concise,

idiomatic way. In the last few decades

various programming paradigms were pro-

posed to improve the programming expe-

rience, some of them—like object-oriented

programming—immensely popular, and

mainstream languages had to be con-

stantly revised to keep up with the times.

Thus the transition from C to C++ and

Objective-C, or the inclusion of functional

programming features in Java 8.

In contrast, extending Lisp or creat-

ing domain-specific languages in it does

not require amendments to the language

specification, and is considered a ba-

sic exercise. So much in fact that

most advanced textbooks include an ex-

ample, such as object-oriented program-

ming,
5,11

declarative/logic (Prolog) pro-

gramming,
1,5,11

concatenative (Forth) pro-

gramming,
8

lazy streams,
1

or nondeter-

ministic computing.
1,5

The paper is organized as follows. After

building up a minimal subset of Common

Lisp, we look at a basic object-oriented pro-

gramming suite with some variations, fol-

lowed by a discussion, and concluded by

further references for the interested reader.

1

A Lisp Tutorial

In the following I am going to describe a

very small subset of Common Lisp—just

enough to be able to show the power of

metaprogramming. While the fundamen-

tals of Lisp can be shown with only 7 prim-

itives,
6

here we will need a little more than

that to also handle side effects.

Basics

Lisp programs are composed of S-expres-
sions or sexps:

⟨sexp⟩ ::= ⟨atom⟩ | ⟨list⟩

⟨atom⟩ ::= ⟨symbol⟩ | ⟨number⟩

⟨list⟩ ::= () | (⟨elems⟩) |

(⟨elems⟩ . ⟨sexp⟩)

⟨elems⟩ ::= ⟨sexp⟩ | ⟨sexp⟩ ⟨elems⟩

where symbols are alphanumeric identi-

fiers, and numbers use the conventional

notation. So

(foo (bar 42) () . baz)

would be a valid example. A sexp can be

evaluated, yielding another sexp, using the

following rules:

• Numbers are self-evaluating,

• Symbols evaluate to the associated

value in the current environment,

• Lists evaluate to the result of applying

the function associated with the first

element to the evaluation result of the

rest of the elements.

For example, with suitably defined arith-

metic functions, (+ 1 (* 2 3)) evalu-

ates to 7.

An arbitrary sexp can be quoted with the

quote special form, e.g. (quote foo)

evaluates to foo. As a syntactic sugar,

single quotation marks can also be used,

so the example above can be written as

’foo. This is not restricted to symbols,

e.g. ’(+ 2 3) evaluates to (+ 2 3).

The function cons creates a dotted pair
of its two arguments; the two elements can

be extracted with car and cdr. For ex-

ample, (cons ’a ’b) evaluates to (a .
b), and (car ’(a . b)) to a. This is a

special case of lists—actually lists are just

nested pairs, so the following expressions

are equivalent:

(a . (b . (c . d)))
(a b c . d)

When the right element of the innermost

pair is the special symbol nil, it is nor-

mally not printed:

(a . (b . nil)) ≡ (a b . nil)

≡ (a b)

The nil atom is very versatile: it is self-

evaluating, identical to the empty list (),

and also doubles as the false Boolean

value. Note also that (car nil) and

(cdr nil) both evaluate to nil.

Any non-nil value is considered true,

but predicates usually return the canon-

ical (self-evaluating) truth symbol t. Ex-

amples of such functions include atom,

which is true for atoms and false for lists

(but note that the empty list is nil, so it

is considered an atom), and eq, which is

true when its two arguments represent the

same atom. For example,

(eq (car ’(a b c))
(cdr ’(b . a)))

evaluates to t. (The language is white-

space-insensitive; expressions can be

freely reformatted.)

Another special form is the conditional

expression

2

(if pred sexp1 sexp2)

which returns sexp2 when pred evalu-

ates to nil, and sexp1 otherwise. For

example the following returns yes:

(if (atom 42) ’yes ’no)

Functions

The last of the building blocks we need for

a working Lisp is a way to define functions.

A function is represented by the sexp

(lambda (p1 p2 ...) sexp)

where (p1 p2 ...) is a list of zero

or more symbols, the parameters of this

lambda-expression. Evaluating this with

actual arguments (a1 a2 ...) creates

an environment where the symbol p1 is

bound to the value a1, p2 to a2 and so

forth, and returns the value of sexp when

evaluated in this environment. For exam-

ple, the function application

((lambda (x y)
(cons x

(cons (car y) nil)))
’a ’(b c))

returns (a b).

With this, the language is already

Turing-complete,
7

but for convenience we

will also use

(defun name (p1 p2 ...) sexp)

to bind the corresponding lambda expres-

sion to the symbol name in the global en-

vironment, also allowing recursive invoca-

tions inside sexp. Figure 1 shows two ex-

amples.

A few notes are in order. The funcall
in the first definition applies its first ar-

gument, a function, to the rest of its ar-

guments. This is needed because Com-

mon Lisp is a Lisp-2 where there are dif-

ferent namespaces for values and func-

tions, so a symbol has a “slot” for both

a value and a function. Lambda expres-

sions bind the value slot, but function ap-

plication needs the function slot; funcall
converts between the two. Other Lisps,

such as Scheme, have a common name-

space and function-valued expressions can

be called directly. A relative of funcall is

apply, which treats its last argument as

a list of arguments, so e.g. the following

expressions are equivalent:

(apply f 1 2 ’(3 4))
(funcall f 1 2 3 4)

The function caar in the second defini-

tion is the car of car, i.e., it can be de-

fined as

(defun caar (x)
(car (car x)))

There are many similar convenience func-

tions cadr, cdar, cddr, caaar, etc.

Side effects

At this point our language is still purely

functional. Let us add some functions that

modify the environment: setq changes

the binding of its first argument; rplaca
and rplacd change the car- and cdr-part

of a cons cell, respectively.

Since now we have side effects, it makes

sense to connect function calls sequen-

tially. The special form progn takes any

number of arguments, calls them in the

given order, and returns the value of the

last expression. We also modify lambda
and defun to have an implicit progn in

their body. The following program evalu-

ates to ((a . d) . e):

((lambda (x y)
(rplacd x ’d)
(setq y ’e)
(cons x y))

’(a . b) ’c)

3

(defun mapcar (fun list)
(if (atom list)

nil
(cons (funcall fun (car list))

(mapcar fun (cdr list)))))

Ex. (mapcar (lambda (x) (* x x)) ’(1 2 3))⇒ (1 4 9)

(defun assoc (item alist)
(if (atom alist)

nil
(if (eq item (caar alist))

(car alist)
(assoc item (cdr alist)))))

Ex. (assoc ’b ’((a . 1) (b . 2) (c . 3)))⇒ (b . 2)

Figure 1: Definition of mapcar and assoc.

Finally, with defvar we can declare

global variables. These are special in the

sense that they have dynamic lookup, so

their values are consulted at the time of

evaluation, not at the time of function def-

inition.

Metaprogramming

We already have a core language, but it

is somewhat clumsy. Local variables, for

example, can only be declared through

lambda-expressions. We introduce our

last tool, which is to define macros—

functions that run in compile time and

generate source code. A defmacro defi-

nition has the same syntax as a defun,

but on evaluation it should return a sexp

that will be treated as source code.

Since this requires building lots of lists,

there is a convenient syntactic sugar called

quasiquoting, which is like quoting, but

with value substitution. It is written as

a backquote (‘), and “interpolation” inside

quasiquotation is done with a comma (,).

Lists can also be spliced into the sexp with

comma-at (,@). The expression below eval-

uates to (42 (a b) a b):

((lambda (x)
‘(42 ,x ,@x))

’(a b))

Figure 2 shows an extended example us-

ing defmacro, creating a more comfort-

able way of defining new local variables.

The let form extends the environment in

a single step, while the let* variant cre-

ates new bindings one by one, so each can

depend on previous ones.

Some notes on the implementation. The

list of arguments in let is reinterpreted as

a dotted pair: the car is the first argument,

and the cdr is a list containing the rest, so

this is a way to define macros with vari-

able arity. A more common—and explicit—

way to do this in Common Lisp, which also

works for functions, is to add &rest (or

also &body in the case of macros) before

4

(defmacro let (bindings . body)
‘((lambda ,(mapcar ’car bindings)

,@body)
,@(mapcar ’cadr bindings)))

(defun let*-helper (bindings body)
(if (atom bindings)

‘(progn ,@body)
‘((lambda (,(caar bindings))

,(let*-helper (cdr bindings) body))
,(cadar bindings))))

(defmacro let* (bindings &body body)
(let*-helper bindings body))

Examples (both evaluate to 5):

(let ((a 1) (let* ((a 1)
(b 2)) (b (+ a 1)))

(setq a 3) (setq a 3)
(+ a b)) (+ a b))

Figure 2: Definition of let and let*.

the variable associated with the rest of the

arguments, as in the definition of let*.

Utilities

Before we go on, let us define some very

useful utilities, shown in Figure 3.

• nth and set-nth query and set the

n-th element in a list, respectively.

The latter is not part of Common Lisp,

because there is a very comfortable,

general framework for in-place value

modification (setf) instead, but the

details are unfortunately outside the

scope of this tutorial.

• or returns the first non-nil value of

its arguments. It is short-circuiting

in the sense that further arguments

are not evaluated, so e.g. the following

evaluates to 1 without error:

(or nil 1 (/ 2 0))

In the implementation, (gensym) re-

turns a fresh symbol that cannot clash

with other variables. This is needed

because f may already exist in the en-

vironment.

• cond is a multi-way conditional with

implicit progns in the then-clauses.

• member returns the first tail of the

original list that starts with the given

item, or nil if it is not contained in

the list.

5

(defun nth (n list)
(if (= n 0)

(car list)
(nth (- n 1) (cdr list))))

(defun set-nth (n list value)
(if (= n 0)

(rplaca list value)
(set-nth (- n 1) (cdr list) value)))

(defun or-helper (forms)
(if (null forms)

nil
(let ((f (gensym)))

‘(let ((,f ,(car forms)))
(if ,f

,f
,(or-helper (cdr forms)))))))

(defmacro or (&rest forms)
(or-helper forms))

(defun cond-helper (clauses)
(if (null clauses)

nil
‘(if ,(caar clauses)

(progn ,@(cdar clauses))
,(cond-helper (cdr clauses)))))

(defmacro cond (&rest clauses)
(cond-helper clauses))

(defun member (item list)
(cond ((null list) nil)

((eq (car list) item) list)
(t (member item (cdr list)))))

(defun fold (f init list)
(if (null list)

init
(fold f (funcall f (car list) init) (cdr list))))

Figure 3: Definition of some useful functions and macros.

6

• fold reduces a list using a binary op-

eration and an initial element. (The

corresponding Common Lisp function

is actually called reduce, but it

would need the introduction of key-

word arguments.)

In Figure 4 we also define a simple dic-

tionary data structure, represented as an

association list with a nil sentinel node.

A simple OOP suite

Common Lisp has an amazing object sys-

tem,
9

which has been imitated in several

other languages. Here we will not make

anything near as ambitious as that, only

a proof-of-concept for object-oriented pro-

gramming.

We are going to build a class-based sys-

tem with single inheritance. A class is rep-

resented by a list containing (i) its par-

ent, (ii) the names of its instance vari-

ables, (ii) its constructor method, (iii) its

instance methods, and (iv) its class vari-

ables. All classes are inserted in a special

(i.e., global- and dynamic-scoped) dictio-

nary variable. A few accessor functions are

also defined for convenience, see Figure 5.

Class definition is handled by a macro

that stores variable names and creates dis-

patch functions for the methods, see Fig-

ure 6; some example class declarations are

shown in Figure 7.

An instance of a class is represented by

a list of its class and a dictionary of values

for its variables. Querying and modifying

a variable is internally done by get-var
and set-var, going up the class hierar-

chy until the variable is found, see Fig-

ure 8. The macros value and set-value
are just for getting rid of the quoting char-

acter.

When creating a method, we need to cap-

ture some “keywords”:

• this refers to the current instance.

• my and set-my read and write vari-

ables through the current instance,

respectively.

• super calls a method of the parent

class.

Calling a method of the parent class needs

to know the class in advance, since in

that case the dispatch is static, not dy-

namic. This capturing is performed by

interpret-sexp, which is called by

both defconstructor and defmethod,

see Figure 9. A few method definitions are

shown in Figure 10.

We are almost done, only a few

functions are missing. The dynamic dis-

patch calls generated by defmacro call

call-method; the interpret-sexp
macro also generates code calling

call-constructor; and we also

need a way to construct objects, which will

be done by instance. The definitions of

these functions are shown in Figure 11.

This implementation has some obvious

flaws, such as lack of error handling, or ef-

ficiency issues (dictionaries would be bet-

ter implemented as hash tables, for exam-

ple, which are a part of Common Lisp).

Still, it is a usable system, where we can

do something like

(let ((s (instance
square 3 ’red)))

(area-ratio s 36))

evaluating to 4.

Class variables present an interesting

challenge. The example in Figure 7 de-

clares the number of vertices as a class

variable in polygon, with the intent that

7

(defun make-dict () (cons nil nil))
(defun dict-keys (dict) (mapcar ’car (cdr dict)))
(defun dict-values (dict) (mapcar ’cdr (cdr dict)))
(defun dict-get (key dict) (cdr (assoc key dict)))
(defun dict-set (key dict val)
(let ((entry (assoc key dict)))

(if entry
(rplacd entry val)
(rplacd dict (cons (cons key val)

(cdr dict))))))

Figure 4: Definition of a dictionary data structure.

(defvar *classes* (make-dict))
(defun parent (class)
(nth 0 (dict-get class *classes*)))

(defun instance-var-names (class)
(nth 1 (dict-get class *classes*)))

(defun constructor (class)
(nth 2 (dict-get class *classes*)))

(defun set-constructor (class f)
(set-nth 2 (dict-get class *classes*) f))

(defun method (class name)
(dict-get name (nth 3 (dict-get class *classes*))))

(defun set-method (class name value)
(dict-set name (nth 3 (dict-get class *classes*)) value))

(defun class-var-names (class)
(dict-keys (nth 4 (dict-get class *classes*))))

(defun class-var (class name)
(dict-get name (nth 4 (dict-get class *classes*))))

(defun set-class-var (class name value)
(dict-set name (nth 4 (dict-get class *classes*)) value))

Figure 5: Accessor functions for the class data structure.

it would be set to 3 in the triangle class,

and to 4 in the square class. However, in

the current implementation, this variable

has only one value (residing in polygon),

and after the calls

(set-value
’triangle vertices 3)

(set-value
’square vertices 4)

it will be set to 4, and even the query

8

(defmacro defclass (name parent &rest properties)
‘(progn

(dict-set ’,name *classes*
(list ’,parent

’,(append
(instance-var-names parent)
(cdr (assoc ’instance-var properties)))

nil (make-dict)
(fold (lambda (var dict)

(dict-set var dict nil))
(make-dict)
’,(cdr (assoc ’class-var properties)))))

,@(mapcar (lambda (method)
‘(defun ,method (instance &rest args)

(call-method instance
(instance-class instance)
’,method args)))

(cdr (assoc ’method properties)))))

Figure 6: The defclass macro.

(value ’triangle vertices)

would evaluate to 4. This is how static

member variables operate in C++, but we

can reinterpret them differently, in a way

that each class has its own instances of its

ancestors’ class variables. We only need to

modify defclass such that instead of the

second call to make-dict it deep-copies

the dictionary containing the class vari-

ables of the parent class.

As a further modification, we can elim-

inate method declarations—another rem-

nant of conventional OOP frameworks.

This is easily accomplished by moving the

dispatch template code from defclass
into defmethod. Doing this also has the

upside that now we know the exact argu-

ments of the method, so the dispatch func-

tion can have meaningful variable names

instead of a single args. The modified

defmethod is shown in Figure 12.

The reader is advised to try other mod-

ifications, such as moving to a prototype-

based framework as in JavaScript or Self

(should be even simpler than the current

one), or adding abstract classes, informa-

tion hiding, multiple dispatch, etc.

Discussion

Even through such a trivial example we

can see how easy it is to extend the lan-

guage, and how seamlessly the new con-

tructions fit into the original syntax. While

OOP may be a particularly low-hanging

fruit, other paradigms can also be imple-

mented in a similar fashion. In addition

to the examples enumerated in the in-

troduction, there are libraries for aspect-

or context-oriented programming, reac-

9

(defclass polygon nil
(class-var vertices)
(instance-var color)
(method area circumference size))

(defclass triangle polygon
(class-var angle-tolerance)
(instance-var a b c)
(method right-angled-p))

(defclass equilateral-triangle triangle)

(defclass square polygon
(instance-var a))

The definition of triangle, for example, is expanded to

(progn
(dict-set ’triangle *classes*

(list ’polygon ’(color a b c) nil (make-dict)
(fold (lambda (var dict)

(dict-set var dict nil))
(make-dict)
’(angle-tolerance))))

(defun right-angled-p (instance &rest args)
(call-method instance (instance-class instance)

’right-angled-p args)))

(In Common Lisp it is customary for the name of predicates to end with p.)

Figure 7: Example class declarations.

tive programming, inductive programming,

and so on.

One concern is that such freedom has a

price: it can easily be misused, and may

harm 3rd-party code readability. This is

true, but ‘ with great power comes great re-

sponsibility’; a judicious use of metapro-

gramming does no harm.

The “comfort” of the programming expe-

rience also depends on the environment,

such as a fast feedback cycle using a read-

eval-print loop, a nice IDE with on-line

documentation, a large and logically con-

structed standard library, and probably

some other factors, as well. Homoiconicity

does not help here, but fortunately Com-

mon Lisp (and some other Lisp variants)

do very well in these respects.

Finally, a word about types. Lisp, as out-

lined above, is basically typeless. Common

10

(defun instance-class (instance)
(nth 0 instance))

(defun instance-var (instance name)
(dict-get name (nth 1 instance)))

(defun set-instance-var (instance name value)
(dict-set name (nth 1 instance) value))

(defun get-var (instance-or-class name)
(let ((class (if (atom instance-or-class)

instance-or-class
(instance-class instance-or-class))))

(cond ((member name (instance-var-names class))
(instance-var instance-or-class name))

((member name (class-var-names class))
(class-var class name))

(t (get-var (parent class) name)))))

(defun set-var (instance-or-class name value)
(let ((class (if (atom instance-or-class)

instance-or-class
(instance-class instance-or-class))))

(cond ((member name (instance-var-names class))
(set-instance-var instance-or-class name value))

((member name (class-var-names class))
(set-class-var class name value))

(t (set-var (parent class) name value)))))

(defmacro value (instance-or-class name)
‘(get-var ,instance-or-class ’,name))

(defmacro set-value (instance-or-class name value)
‘(set-var ,instance-or-class ’,name ,value))

Figure 8: Handling instances and variables.

Lisp has strong dynamic typing (with op-

tional explicit type signatures), but Lisps

normally do not have the kind of strong

static typing we see in the ML or Haskell

languages. This is in line with the “more

freedom to the programmer” philosophy

that leads to shorter development times,

in exchange for less confidence in program

correctness.

11

(defun interpret-sexp (instance sexp super-class)
(cond ((atom sexp)

(if (eq sexp ’this) instance sexp))
((eq (car sexp) ’my)
‘(get-var ,instance ’,(nth 1 sexp)))

((eq (car sexp) ’set-my)
‘(set-var ,instance ’,(nth 1 sexp) ,(nth 2 sexp)))

((eq (car sexp) ’super)
(if (eq (cadr sexp) ’constructor)

‘(call-constructor ’,super-class ,instance
,@(cddr sexp))

‘(call-method ,instance ’,super-class
’,(cadr sexp) ,@(cddr sexp))))

(t (cons
(interpret-sexp instance (car sexp) super-class)
(interpret-sexp instance (cdr sexp)

super-class)))))

(defmacro defconstructor (class args &body body)
(let ((instance (gensym)))

‘(set-constructor
’,class
(lambda (,instance ,@args)

,@(mapcar (lambda (sexp)
(interpret-sexp instance sexp

(parent class)))
body)

,instance))))

(defmacro defmethod (class name args &body body)
(let ((instance (gensym)))

‘(set-method
’,class ’,name
(lambda (,instance ,@args)

,@(mapcar (lambda (sexp)
(interpret-sexp instance sexp nil))

body)))))

Figure 9: Creating methods.

12

(defconstructor polygon (color)
(set-my color color))

(defconstructor triangle (a b c color)
(super constructor color)
(set-my a a)
(set-my b b)
(set-my c c))

(defconstructor equilateral-triangle (n color)
(super constructor n n n color))

(defconstructor square (side color)
(super constructor color)
(set-my a side))

(defmethod polygon area-ratio (whole-area)
(/ whole-area (area this)))

(defmethod square area ()
(* (my a) (my a)))

The constructor of equilateral-triangle, for example, is expanded to

(set-constructor
’equilateral-triangle
(lambda (#:g655 n color)

(call-constructor ’triangle #:g655 n n n color)
#:g655))

(The symbol #:gn here stands for the n-th symbol generated with gensym.)

Figure 10: Example method definitions.

Conclusion and further reading

Programming languages evolve incessant-

ly; new languages are born, and new

paradigms emerge. In spite of this, a

hedgehog—the Lisp family of languages—

has needed relatively few changes since

its inception more than 60 years ago to

keep up with these developments. This

is due to its “big thing”: its powerful ho-

moiconic metaprogramming capability. It

persevered, and I believe it will continue

to assimilate all new methodologies it en-

counters.
10

I hope that through this little introduc-

tion I could convey some of the timeless

beauty that pervades this deceptively sim-

13

(defun call-constructor (class instance &rest args)
(apply (constructor class) instance args))

(defun call-method (instance class name &rest args)
(apply (search-method class name) instance args))

(defun search-method (class name)
(or (method class name)

(search-method (parent class) name)))

(defmacro instance (class &rest args)
‘(funcall (constructor ’,class)

(list ’,class (make-dict))
,@args))

Figure 11: Tying up loose ends.

(defmacro defmethod (class name args &body body)
(let ((instance (gensym)))

‘(progn
(defun ,name (instance ,@args)

(funcall (search-method (instance-class instance)
’,name)

instance ,@args))
(set-method
’,class ’,name
(lambda (,instance ,@args)

,@(mapcar (lambda (sexp)
(interpret-sexp instance sexp nil))

body))))))

Figure 12: Moving the dispatch function into defmethod.

ple concept which makes an almost min-

imal language comfortably high-level and

modern.

For those who would like to learn more

about Lisp, I recommend the Wizard

Book,
1

which teaches Scheme, and Pe-

ter Seibel’s Practical Common Lisp,
13

fol-

lowed by On Lisp,
5

Let Over Lambda,
8

and

Anatomy of LISP.
2‡

‡
Note that while we have concentrated on Lisp as

the paradigm case for symbolic programming, there

are also other (more-or-less) homoiconic languages,

such as Prolog or Julia.

14

References

[1] Harold Abelson, Gerald Jay Sussman,

Julie Sussman (1996). Structure and
Interpretation of Computer Programs
(The MIT Press, 2nd edition).

[2] John Allen (1978). Anatomy of LISP
(McGraw–Hill).

[3] Isaiah Berlin (1953). The Hedgehog
and the Fox: An Essay on Tolstoy’s
View of History (Weidenfeld & Nicol-

son).

[4] Ronald Dworkin (2011). Justice
for Hedgehogs (Harvard University

Press).

[5] Paul Graham (1993). On Lisp: Ad-
vanced Techniques for Common Lisp
(Prentice Hall).

[6] (2002). The Roots of Lisp
(Draft). http://www.paulgraham.com/

[7] Chris Hankin (1995). Lambda Calculi:
A Guide for Computer Scientists (Ox-

ford University Press).

[8] Doug Hoyte (2008). Let Over Lambda:
50 Years of Lisp (Lulu Press).

[9] Sonya E. Keene (1989). Object-
Oriented Programming in Common
Lisp: A Programmer’s Guide to CLOS
(Addison–Wesley).

[10] Randall Munroe (2007). Lisp Cycles
(xkcd). http://xkcd.com/297/

[11] Peter Norvig (1992). Paradigms of Ar-
tificial Intelligence Programming: Case
Studies in Common Lisp (Morgan

Kaufmann Publishers).

[12] Eric S. Raymond (1996). The New
Hacker’s Dictionary (The MIT Press,

3rd edition).

[13] Peter Seibel (2005). Practical Common
Lisp (Apress).

[14] Stephen Wolfram (2002). A New Kind
of Science (Wolfram Media).

15

