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ABSTRACT
The surfaces of complex free-form objects can typically be
modeled by a hierarchy of primary surfaces, connecting sur-
faces and corner patches. Within the context of digital shape
reconstruction, these surfaces simultaneously approximate
measured data points, satisfy fairness criteria and adhere to
continuity constraints according to their dependencies. A
new framework algorithm is introduced to perfect existing
B-spline surfaces; the algorithm alternates — in a stepwise
manner — between continuity constraint satisfaction and
fairing by the remaining degrees of freedom. Some well-
known fairing methods are adapted to this framework; to-
gether with a new approach based on curvature approxima-
tion. Constrained fairing for n-sided corner patches, com-
posed of quadrilaterals, is also briefly discussed. A few ex-
amples illustrate the results.

Keywords
Digital shape reconstruction, surface fairing, geometric con-
tinuity, constraints

1. INTRODUCTION
Digital Shape Reconstruction deals with the creation of CAD
models based on measured data points. There are applica-
tions where the only goal is to obtain models with high ac-
curacy. In other applications, achieving “visually pleasing”
appearance dominates the process; even if tolerances need
to be loosened. There is a strong industrial demand for
(semi-)automatic methods to visually improve the quality
of CAD models while the original, reconstructed features
are also preserved.

There is no unique algebraic formulation to describe aes-
thetic perfection, nevertheless, it is generally agreed in the
CAD community that even curvature distribution with large,
monotone curvature areas is crucial for obtaining high-qua-
lity surface geometries.

Figure 1: Primaries, connections, corner patches.

Several papers have been published on fairing individual
curves and surfaces. These approaches can be divided into
two categories. There are the variational methods, that si-
multaneously minimize least-squares distances and various
smoothness functionals during surface fitting; and there are
the post-processing methods that apply changes on already
existing geometries.

Traditional methods work quite well when single surfaces
are being faired independently of their environment. In this
paper, we step forward and investigate the problem of con-
strained fairing, where surfaces must also be smoothly con-
nected to other surface elements.

1.1 Basic Concept
According to the functional decomposition paradigm de-
scribed in [13], a complex CAD model can be broken down
into a set of surfaces with continuity constraints. Typically
there is a hierarchy comprising (i) primary surfaces (ii) con-
necting surfaces, such as fillets, and (iii) corner patches. Sur-
face reconstruction is also performed accordingly, providing
continuity constraints from the previous phases. Primary
surfaces are independent; fillets smoothly connect to two pri-
mary surfaces, and corner patches to several surfaces up in
the hierarchy. These include not only fillets, but primaries as
well, sharing common boundaries with corner patches at T-
node junctions or when setbacks are applied [14], see Fig. 1.



We propose to fair a reconstructed model following the same
hierarchical order. A general observation is that primary
surfaces are relatively large and are supposed to preserve
the original design intent, as opposed to the connections
and corner patches, which are much smaller, and the related
measured data points are less accurate, so some deviation is
more permissible to assure continuity and fairness.

1.2 Goals
There are several papers in the literature that deal with
continuity constraints or surface fairing. Generally, when
an individual surface is faired, the original accuracy along
the surface boundaries is lost; when continuity constraints
are satisfied often undesirable curvature artifacts can be ob-
served in the interior of the surface. Our goal is to main-
tain continuity and provide fair surfaces simultaneously in
the post-processing context, which makes it possible to per-
fect dependent surface geometries of a complex CAD model.
The connections between the adjacent surface elements have
a large influence on the overall quality of the model, and
at least numerical G2 continuity is recommended. When
dealing with trimmed free-form surfaces, algebraic continu-
ity cannot be assured in general, and continuity must be
interpreted in the numerical sense, i.e. controlled by tight
tolerances.

The focus of our discussion is an algorithm that reaches the
above goal in a stepwise manner. Assume that the surface
we want to modify is connected to n neighboring surfaces
up in the hierarchy (master surfaces) with C0 continuity.
Our proposal is to use two types of algorithms in an alter-
nating manner: one sets geometric continuity to the master
surfaces, and the other performs fairing retaining the con-
tinuity already achieved. For continuity setting, there are
two phases: one going from C0 to G1, and another one
from G1 to G2 continuity. The alternation with fairing is
essential, because the continuity constraints may crease the
surface near the sides, thus harming surface quality. Also,
the known fairing methods need to be tweaked such that the
established continuity is not destroyed.

1.3 Outline
The paper is structured as follows. In Section 2 we briefly
review some papers that are important for this work. Sec-
tion 3 explains the constrained fairing framework algorithm
in details, both the simple four-sided configuration and its
extension to n-sided patches. In Section 4 we present algo-
rithms for setting numerical G1 and G2 continuity. Section 5
deals with the modification and application of existing fair-
ing algorithms in the continuity-preserving context, along
with a new, curvature approximation based method outlined
in Section 5.3. The results are illustrated by some examples
in Section 6.

2. PREVIOUS WORK
While publications on constrained surface fairing in the post-
processing context are not known to the authors, variational
constrained fairing methods have recently been investigated
in Lai et al. [8] or Hsu et al. [6].

Space limitations prevent us to review the wide range of
fairing and continuity fixing algorithms; instead we have col-

lected a few contributions that have been influential to our
current research.

Concerning curvature continuity constraints Pegna and Wol-
ter [9] proved the Linkage Curve Theorem, which gives a
necessary and sufficient condition for G2 continuity between
two surfaces that share common tangent planes. This was
later rephrased in Hermann et al. [5] for Gn continuity. The
theorem states the following:

Two surfaces tangent along a C1-smooth link-
age curve are curvature continuous if and only if
at every point of the linkage curve, their normal
curvature agrees for an arbitrary direction other
than the tangent to the linkage curve.

This is the basis of our G2 algorithm in Section 5.3.

Concerning curvature approximation, a paper by Greiner
[3] gives a quadratic approximation of surface curvature us-
ing a reference surface (e.g. a least-square fitting of the
data points). The main idea here is to compute part of
the Hessian matrix from the reference surface, such that
the computation still dependent on the real surface is only
quadratic. Then the mean and Gauss curvatures can be
computed from the Hessian. Greiner also introduces a data-
dependent quadratic fairness functional, along with an algo-
rithm minimizing this approximated curvature.

We use different fairing algorithms in our tests, which will
be discussed in more details in Section 5. Knot-Removal and
Reinsertion (KRR), proposed originally by Farin and Sapidis
[2], is one of the simplest and most widely used local, control-
point based fairing algorithm. It provides fair curves by
removing and reinserting the most offending knots, thus the
C3 jumps for a cubic B-spline are reduced, which yields nicer
curves. The algorithm has a couple of variations; Hahmann
[4] extended the method to surface fairing.

Another fairing method was proposed by Salvi et al. [11],
where a smoothed target curvature is approximated with
some tolerance control. This is an efficient algorithm using
numerical integration. A discrete set of faired data points
is computed, which are re-approximated to obtain the final
faired surface.

For fairing n-sided corner patches (see Section 3.4), bi-para-
metric surface algorithms cannot be used. Instead, we adapt
an algorithm proposed by Kobbelt [7], where an n-sided sur-
face region is approximated by a triangular mesh and dis-
cretized fairing is applied. A local quadratic approximation
is used to compute the second-order partial derivatives and
minimize the thin plate energy. G1 continuity constraints
can be preserved at sampled data points around the bound-
ary of the n-sided region.

3. THE MAIN ALGORITHM
Constrained surface fairing has to achieve two goals simul-
taneously: improve surface quality and ensure continuity
constraints. In this section, we discuss how the framework
algorithm proceeds, and later we will present the actual
computations for G1 and G2 continuity, and the preferred



algorithms of fairing. Before the alternating, frame-based
method is introduced, let us first define, what frame means
in this context.

3.1 Frames
A B-spline surface S(u, v) is defined by means of its control
points Pij (i ∈ [0 . . . n], j ∈ [0 . . .m]) and its knot vectors U
and V :

S(u, v) =

nX
i=0

mX
j=0

PijN
U,p
i (u)NV,q

j (v),

where p and q are the degrees of the surface in the u and
v directions, respectively. The four boundaries of the sur-
face are defined by the outermost control points — P0j , Pnj ,
Pi0 and Pim, respectively (i ∈ [0 . . . n], j ∈ [0 . . .m]). We
call these together as the positional frame. Let us assume
hereinafter that the outermost control points are fixed. The
tangent planes at the points of the boundaries are indirectly
determined by the first cross-boundary derivatives, i.e. by
the inner control points P1j , P(n−1)j , Pi1 and Pi(m−1), re-
spectively (i ∈ [1 . . . n− 1], j ∈ [1 . . .m− 1]). We call these
control points together the tangential frame. Finally, as-
sume that control points of the positional and tangential
frames are fixed. Then the surface curvatures at the points
of the boundaries are indirectly determined by the second
cross-boundary derivatives, i.e. by the inner control points
P2j , P(n−2)j , Pi2 and Pi(m−2), respectively (i ∈ [2 . . . n− 2],
j ∈ [2 . . .m− 2]). We call these control points together the
curvature frame.

3.2 Basic Steps
The frame algorithm proceeds in the following way:

1. Insert additional knots into the knot vectors of the
surface, if it had too few control points. This step is
necessary in order to provide sufficient degrees of free-
dom for the forthcoming fairing steps in the interior.

2. Fair the surface, while retaining C0 continuity for each
boundary, i.e. only control points within the positional
frame are used for fairing.

3. Fix the positional frame and set G1 continuity for each
boundary.

4. Fair the surface, while retaining G1 continuity, i.e. only
control points within the tangential frame are used for
fairing.

5. Fix the tangential frame and set G2 continuity for each
boundary.

6. Fair the surface, while retaining G2 continuity, i.e. only
control points within the curvature frame are used for
fairing.

To sum it up, the sequence is always an alternation of fairing
and constraining, until a fair surface with G2 continuity is
achieved.

Figure 2: Five-sided corner patch consisting of five quadri-
lateral surfaces

3.3 Handling Twist Vectors
When we set G1 continuity for individual boundaries, the
so-called twist compatibility condition [1] must also be sat-
isfied; this involves the mixed partial derivatives, which are
indirectly determined by the so-called twist control points
P11, P1(m−1), P(n−1)1 and P(n−1)(m−1). When we set G2

continuity for individual boundaries, a similar compatibil-
ity condition needs to be satisfied to tweak the inner twist
control points P22, P2(m−2), P(n−2)2 and P(n−2)(m−2).

With other words, when we compute the cross-derivative
functions independently, then for every twist (or inner twist)
control points we obtain two values that need to be united
in order to get a valid B-spline. There is a range of methods
how to determine a common value, though experience shows,
that the two candidate control points coming from the ad-
jacent boundaries generally lie very close to each other, so a
simple averaging works well. Having tweaked the twist con-
trol points, we can repeat the continuity setting algorithms,
now constraining only the inner j ∈ [2 . . .m − 2] control
points for G1 and the j ∈ [3 . . .m− 3] control points for G2

continuity, respectively, which will yield the best possible
frames that comprise the new twist values.

3.4 Extension to n-sided Corner Patches
There are corner patches with three or more than four (usu-
ally five or six) connecting surfaces. The simplest represen-
tation of these is based on the so-called central split, where
n quadrilateral surfaces are stitched together, see Fig. 2 for
a five-sided example. The main difficulty here is that cor-
ner patches consist of more than one biparametric surface,
so we have to ensure continuity not only along the external
boundaries, but along internal subdividing curves between
the quadrilaterals as well. Moreover, no fairing algorithm is
known to the authors that can handle multiple surfaces at
the same time.

In order to cope with these difficulties, the procedure pre-
sented in Section 3.2 needs to be modified. First we fair the
entire corner patch. The rest of the algorithm works on the
quadrilateral level, so this is the only part, where the sub-



Figure 3: Triangle mesh of a five-sided corner patch

dividing boundaries are modified. It aims at creating a fair
initial shape, and may be omitted, if the original patch was
of sufficiently good quality.

We use discrete smoothing to achieve the global fairing ef-
fect, as described below. After sampling the n-sided region,
a triangular mesh is obtained (see Fig. 3), and an algorithm
suggested by Kobbelt [7] is performed. This can inherit G1

continuity at discrete points of the boundaries, if needed.
Using the faired n-sided mesh, we refit the quadrilateral
surfaces, and fix the internal subdividing curves and related
cross-derivative functions for the forthcoming internal con-
tinuity setting. This algorithm, due to precision loss, would
not be suitable in the later steps of our algorithm, but it is
easy to use regardless of the number of quadrilaterals.

Having the group of n surfaces, sharing the fixed subdividing
boundaries, the framework algorithm is modified, as follows.

1. For each quadrilateral set G1 continuity with its neigh-
bors. (Adjust twists, recompute.)

2. For each quadrilateral perform local fairing, while re-
taining G1 continuity.

3. For each quadrilateral set G2 continuity with its neigh-
bors. (Adjust inner twists, recompute.)

4. For each quadrilateral perform local fairing, while re-
taining G2 continuity.

4. SETTING CONTINUITY
We set continuity between two B-spline surfaces M (master)
and S (slave) by modifying the appropriate frame of S. The
general idea is to draw up the equations for a number of
sampled parameter points along the border and minimize
the least-squares error of the equation system.

We will treat the algorithm on a per side basis. The equa-
tions here use index ranges that also include the twists. As
explained in Section 3.3, these may need to be pinned down,

but the necessary adjustments of the algorithms are straight-
forward.

4.1 Tangential Continuity
Let M and S be joined (without loss of generality) along the
u0 parameter line with C0 continuity. We want to modify
the corresponding side of the tangential frame, i.e. the sec-
ond control row of S, such that the two surfaces will have
numerical G1 continuity. We also take sampled parameters
vk (k ∈ [1 . . .K]) along the border. The normal vectors at
these (u, vk) points of the master surface are denoted by nk.
If we now add displacement vectors wj to the control points
P1j (j ∈ [1 . . .m−1]), they will modify the original tangents
ek in the following way:

êk = ek + ṄU,p
1 (u)

m−1X
j=1

NV,q
j (vk)wj (1)

= ek +

m−1X
j=1

ck,jwj . (2)

Since we would like to avoid superfluous control point move-
ments, we minimize the deviation only in the surface normal
direction. This leads to

êk = ek − nk(eknk). (3)

Subtracting ek from (2) and (3) gives the linear equation
system Ax = b, where

A =

26664
c11 c12 · · · c1(m−1)

c21 c22 · · · c2(m−1)

...
...

. . .
...

cK1 cK2 . . . cK(m−1)

37775 ,

x =

26664
w1

w2

...
wm−1

37775 , b =

26664
−n1(e1n1)
−n2(e2n2)

...
−nK(eKnK)

37775 .
We have K equations and m − 1 unknowns. Solving the
least-square equation (Ax− b)2 = 0 leads to a linear system
of (ATA)x = AT b.

4.2 Curvature Continuity
We have the same assumptions as in the G1 case, but now we
already have a numerical G1 connection. Take K parameter
points from the v domain: vk, 1 ≤ k ≤ K. For every vk,
calculate the normal curvature κM

k of M at (u0, vk) in the
u direction. If we modify S such that its normal curvature
in the u direction is the same, we will have G2 continuity in
(u0, vk), because of the Linkage Curve Theorem (see Section
2).

The normal curvature of a surface at (u, v) in some d direc-
tion can be calculated as:

κ(λ) =
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
,

where E, F , G and L, M , N are the coefficients of the first
and second fundamental form, respectively; λ = dv

du
and

d = duSu + dvSv. In the special cases where d is the u or v



parametric direction, this is simplified into L/E and N/G,
respectively.

Minimization
Instead of directly optimizing for surface curvature, we use
the curvature of the surface curve Ck(u) = S(u, vk), which
results in much simpler equations [12]. We know from Meus-
nier’s theorem [1] that at a given point, the curvature κC of
a surface curve C and the normal curvature κ of a surface S
in the tangent direction of C have the following relationship:

κ = κC cos θ =
‖C′ × C′′‖
‖C′‖3

cos θ =
〈C′′, n〉
‖C′‖2

,

where n =
Su×Sv

‖Su×Sv‖
is the surface normal and θ is the angle

between n and the curve normal (C′ × C′′)× C′.

Consequently, we have to solve equations of the form

〈C′′k (u0), nk〉
‖C′k(u0)‖2

= κM
k . (4)

Since

Ck(u) = S(u, vk) =

nX
i=0

NU,p
i (u)

 
mX

j=0

NV,q
j (vk)Pij

!

=

nX
i=0

NU,p
i (u)P̂i,

the first and second derivatives at the end are

C′k(u0) =
p

up+1 − u0
(P̂1 − P̂0),

C′′k (u0) =
p− 1

up+1 − u0

„
p

up+2 − u0
(P̂2 − P̂1)

− p

up+1 − u0
(P̂1 − P̂0)

«
,

see [10] (assuming that u0 = u1 = · · · = up).

If we want to modify the P2j control point by a vector dj ,
we can reformulate Eq. 4 as

∆κk

‚‚C′k(u0)
‚‚2 (up+1 − u2)(up+2 − u2)

p(p− 1)

=

m−2X
j=2

NV,q
j (vk)

˙
dj , nk

¸
,

(5)

where ∆κk = κM
k − κS

k . Note that the second half of C′′k
is eliminated in the scalar product by the (perpendicular)
surface normal.

We propose two different solutions for this equation system.
In the first one, in order to avoid superfluous control point
movements, the P2j points are only allowed to move in an
approximate perpendicular direction (oj for P2j). Alterna-
tively, we can require that the sum of the squared deviations
should be minimal.

Figure 4: Approximate perpendicular direction computed
from control points

Solution by Fixed Directions
An intuitive choice for perpendicular directions is the surface
normal at the Greville abscissae corresponding to the control
point. An easy alternative is to get the cross product of
the difference of the neighboring control points (Fig. 4), i.e.
oj = (P3j − P1j) × (P2(j+1) − P2(j−1)). If we define the
deviation vectors dj as χjoj and introduce the constants

αkj and βk, Eq. 5 can be rewritten as βk =
Pm−2

j=2 αkjχj .

Now we can create the overdefined equation system Ax = b:

A =

26664
α12 α13 · · · α1(m−2)

α22 α23 · · · α2(m−2)

...
...

. . .
...

αK2 αK3 . . . αK(m−2)

37775 ,

x =

26664
χ2

χ3

...
χm−2

37775 , b =

26664
β1

β2

...
βK

37775 .
Solving the (ATA)x = AT b equation results in a least-
squares approximation, as earlier.

Solution by Minimal Deviation
We can also solve the equations while minimizing the squared
deviation of the P̂2 control point of Ck, by requiring that it
should change only in the nk direction. This means that

Eq. 5 becomes βknk =
Pm−2

j=2 NV,q
j (vk)dj =

Pm−2
j=2 γkjdj .

The equation system is now Ax = b, where

A =

26664
γ12 γ13 · · · γ1(m−2)

γ22 γ23 . . . γ2(m−2)

...
...

. . .
...

γK2 γK3 . . . γK(m−2)

37775 ,

x =

26664
d2

d3

...
dm−2

37775 , b =

26664
β1n1

β2n2

...
βKnK

37775 .



As before, (ATA)x = AT b gives a least-squares approxima-
tion.

5. FAIRING ALGORITHMS
In addition to continuity setting, we also need an algorithm
to fair bi-cubic quadrilateral surface patches. We have sev-
eral options, but there is also a restriction: the smoothing
process should preserve G1/G2 continuity. After some com-
ments on two existing methods, we will present a new alter-
native based on curvature approximation.

5.1 Knot Removal and Reinsertion
This fairing method operates on the control points, usually
choosing the one where the C3 jump is the greatest. We
perform this operation in an iterative manner several times,
combined with some heuristics like taboo search. We can
restrict the choice of control points to those inside the fixed
frame, which retains continuity in a trivial way. On the
backside, KRR is primarily suited for curve fairing. We
can choose between fairing only in the u or v parametric
direction — or average the two values. This simple method
gives quite nice results.

5.2 Target Curvature Based
We have much more flexibility in this algorithm, as the use
of a target curvature enables us to define curvature continu-
ity constraints, which is particularly valuable in our present
task. However, there are some problems. The last fitting
phase may harm the precision of the continuity. In this case,
we need to insert another continuity setting step. Another
drawback is that the algorithm relies on fairing the isocurves
of the surface. This may cause artifacts in complex saddle-
like surfaces.

5.3 Curvature Approximation Based
We will use the curvature approximation outlined in Section
2 to enhance the previous algorithm. Given a reference sur-
face R and a twice differentiable scalar function h̃ defined
on it, Greiner [3] shows that the Hessian matrix of h = h̃◦R
is

HessR(h) =

 X
l

gkl(∂j∂lh−
X

i

∂ihΓi
jl)

!
kj

,

where ∂i is the partial derivative by the ith argument, Γi
jl =P

m gim 〈∂j∂lR, ∂mR〉 and (gij) is the inverse of the first
fundamental form of R (every index can take the values 1
and 2). Note that both Γ and g can be computed before-
hand. The paper also shows that if we use the coordinate
functions Rc (c ∈ [1 . . . 3]) as h, we have

HessR(Rc) =
1

EG− F 2

»
G −F
−F E

– »
L M
M N

–
nc,

where n is the surface normal. This has several nice prop-
erties, for example it is easy to see thatX

c

trace (HessR(Rc))2 = (κR
1 + κR

2 )2,X
c

det (HessR(Rc)) = κR
1 · κR

2 .

(a) Before fairing

(b) After fairing

Figure 5: Isophotes of a car body panel faired by the curva-
ture approximation method

The claim is that using Sc instead of Rc will result in good
approximations of the curvatures of S:X

c

trace (HessR(Sc))2 ≈ (κS
1 + κS

2 )2,X
c

det (HessR(Sc)) ≈ κS
1 · κS

2 .

The reader can consult the original paper [3] for more details.

In our case, we already have a very good reference surface
— the original surface itself. We would like to do something
similar to the algorithm in the previous section, i.e. set up a
target curvature and find a surface with similar curvature.
Our general scheme would be as follows:

1. Sample the original surface at intervals.

2. Compute Γ and g in these positions.

3. Set up a target curvature.

4. Minimize the deviation from the target curvature.



(a) Before fairing

(b) After fairing

Figure 6: Fairing an X-node

We need an equation system that depends linearly on the
control points of S, so it will be easy to minimize. One op-
tion is to create a target mean curvature by smoothing the
traces of Hessian matrices in the sampled points. Another
alternative is to average every element of the Hessian matri-
ces over the sampled points. Since the computation of the
Hessian matrix from the control points is linear, these lead
to overdefined linear equation systems, that can be solved
in least-squares sense. An example is shown in Fig. 5.

As for the continuity restrictions, we can fix the outer frames
as in the KRR algorithm. The advantage of this method is
that it is independent of the parametric directions. However,
we have to minimize a fairly large equation system, which
makes its computational cost quite high.

6. EXAMPLES
Figures 6 and 7 both show the effect of constrained fair-
ing on four-sided corner patches. In these cases, the sur-
face configuration is relatively simple — connecting four fil-
lets. The original surfaces (a) show reasonable isophotes,
but the stripes are not tangential at the common bound-
aries (only G1 continuity). After constrained fairing (b) the
images show smooth stripes, i.e. numerical G2 continuity has
been achieved, and the interiors have been nicely affected,
smoothly joining the master surfaces.

We have a different case in Fig. 8. The configuration con-
nects three fillets and two primary surfaces. Here the orig-
inal corner patch (a) already had numerical G2 that only
needed very minor adjustments. The master surfaces have

(a) Before fairing

(b) After fairing

Figure 7: Fairing another X-node

been retained, but the middle patch was faired (b) increasing
surface quality to a great extent.

These examples show individual corner patches that have
been faired and constrained within the hierarchical frame-
work of dependent surfaces, as described earlier in Section
1.1.

7. CONCLUSION AND FUTURE WORK
A new approach for fairing surface elements of complex CAD
models was presented to support digital shape reconstruc-
tion based on measured data. The process combines fairing
and continuity setting algorithms to perfect functionally de-
composed surfaces following a hierarchical order.

Nonetheless, there is still room for future research and en-
hancements. For example, in the n-sided corner patch case,
the discrete fairing step is going to be replaced by some con-
tinuous fairing technique, which is subject of our current
investigations. The twist compatibility setting can also be
replaced using a different system of equations, i.e. setting
continuity not side by side, but for the entire frame. An-



(a) Before fairing

(b) After fairing

Figure 8: Fairing a five-sided corner patch.

other idea is to fair functionally decomposed surfaces locally,
i.e. using selected portions of adjacent primaries, connec-
tions and corner patches and then apply hierarchical fairing
which will affect only the selected areas.
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[14] T. Várady and A. Rockwood. Geometric construction
for setback vertex blending. Computer-Aided Design,
29(6):413–425, 1997.


