Multi-sided surfaces interpolating arbitrary boundaries with intuitive interior control

Péter Salvi

Budapest University of Technology and Economics

Curves & Surfaces

Arcachon, June 20-24, 2022

Outline

Motivation Transfinite interpolation surfaces Katō's patch Charrot–Gregory patch

Midpoint patch Control-point-based surfaces S-patch Generalized Bézier patch Generalized B-spline patch Hybrid patch Conclusion

Motivation

Outline

Motivation

Transfinite interpolation surfaces Katō's patch Charrot–Gregory patch Midpoint patch

Control-point-based surfaces

S-patch Generalized Bézier patch Generalized B-spline patch

Hybrid patch

Conclusion

Katō's patch (CAD, 1991)

$$\mathbf{S}(u,v) = \sum_{i} \mathbf{R}_{i}(s_{i},d_{i})L_{i}(d_{1},\ldots,d_{n})$$

- Local parameters: side (s_i) & distance (d_i)
- Singular blending function:

$$L_i(d_1,\ldots,d_n)=\frac{\prod_{k\neq i}d_k^2}{\sum_j\prod_{k\neq j}d_k^2}$$

Parameterization based on Wachspress coordinates

side parameter s_i = λ_i / (λ_{i-1} + λ_i)
 distance parameter d_i = 1 - (λ_{i-1} + λ_i)

Charrot-Gregory patch (CAGD, 1984)

Midpoint patch

Alternative blending function:

$$L_{i-1,i}^{M} = \frac{d_{i-1}\alpha_{0}(s_{i})\alpha_{0}(d_{i}) + d_{i}\alpha_{1}(s_{i-1})\alpha_{0}(d_{i-1})}{d_{i-1} + d_{i}}$$

• $\alpha_0(x) = 1 - \alpha_1(x) = 2x^3 - 3x^2 + 1$ (Hermite blends)

• Weight deficient \rightarrow extra DoF

Outline

Motivation

Transfinite interpolation surfaces Katō's patch Charrot–Gregory patch Midpoint patch

Control-point-based surfaces

S-patch Generalized Bézier patch Generalized B-spline patch

Hybrid patch

Conclusion

S-patch [Loop–DeRose] (ACM TOG, 1989)

$$\mathbf{C}(u) = \sum_{\mathbf{J}} \mathbf{P}_{\mathbf{J}} \frac{p!}{\prod_{i} J_{i}!} \prod_{i} \lambda_{i}^{J_{i}}$$

S-patch [Loop–DeRose] (ACM TOG, 1989)

$$\mathbf{S}(u, v) = \sum_{\mathbf{J}} \mathbf{P}_{\mathbf{J}} \frac{p!}{\prod_{i} J_{i}!} \prod_{i} \lambda_{i}^{J_{i}}$$

- J index vector
- ► |**J**| = 3
- ► $\sum_{i} J_i = p$ (degree)
- > λ : barycentric coords.

S-patch [Loop–DeRose] (ACM TOG, 1989)

Transfinite interpolation with S-patches

Transfinite interpolation with S-patches

Transfinite interpolation with S-patches

Generalized Bézier patch

$$\mathbf{S}(u, v) = \sum_{i=1}^{n} \sum_{j=0}^{p} \sum_{k=0}^{\lfloor \frac{p-1}{2} \rfloor} \mathbf{C}_{i,j,k} \cdot \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i}) + \mathbf{C}_{0} \underbrace{\left(1 - \sum_{i=1}^{n} \sum_{j=0}^{p} \sum_{k=0}^{\lfloor \frac{p-1}{2} \rfloor} \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i})\right)}_{1 - B_{\Sigma}(u, v) \text{ [weight deficiency]}}$$

μ_{i,j,k} rational weight
 α_i = d²_{i-1}/(d²_{i-1} + d²_i)
 β_i = d²_{i+1}/(d²_{i+1} + d²_i)
 C₀ central control

Example (shaded & isophote lines)

Generalized B-spline – (shaded, contouring & mean curv.)

Outline

Motivation

Transfinite interpolation surfaces Katō's patch

Charrot–Gregory patch Midpoint patch

Control-point-based surfaces

S-patch Generalized Bézier patch Generalized B-spline patch

Hybrid patch

Conclusion

Hybrid patch

$$\mathbf{S}(u,v) = \sum_{i=1}^{n} \left[\sum_{j=0}^{p} \sum_{k=2}^{\lfloor \frac{p-1}{2} \rfloor} \mathbf{C}_{i,j,k} \cdot \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i}) + \mathbf{R}_{i}(s_{i},d_{i}) \cdot \underbrace{\sum_{j=0}^{p} \sum_{k=0}^{1} \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i})}_{\text{similar to } L_{i}(d_{1},...,d_{n})} + \mathbf{C}_{0} B_{\Sigma}(u,v) \right]$$

Hybrid patch

$$\mathbf{S}(u,v) = \sum_{i=1}^{n} \left[\sum_{j=0}^{p} \sum_{k=2}^{\lfloor \frac{p-1}{2} \rfloor} \mathbf{C}_{i,j,k} \cdot \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i}) + \mathbf{R}_{i}(s_{i},d_{i}) \cdot \underbrace{\sum_{j=0}^{p} \sum_{k=0}^{1} \mu_{i,j,k} B_{j}^{p}(s_{i}) B_{k}^{p}(d_{i})}_{\text{similar to } L_{i}(d_{1},...,d_{n})} + \mathbf{C}_{0} B_{\Sigma}(u,v) \right]$$

Example (isophote lines)

Example (isophote lines)

Outline

Motivation

Transfinite interpolation surfaces Katō's patch

Charrot–Gregory patch Midpoint patch

Control-point-based surfaces

S-patch Generalized Bézier patch Generalized B-spline patch

Hybrid patch

Conclusion

Conclusion

- 1. Transfinite interpolation surfaces
 - Katō's patch
 - Charrot–Gregory patch
 - Midpoint patch
- 2. Control-point-based surfaces
 - S-patch
 - Generalized Bézier patch
 - Generalized B-spline patch
- 3. Hybrid patch
 - Combines GB with Katō's patch
 - Interpolation of arbitrary boundaries
 - Natural control over the interior

Limitations:

- Not CAD-compatible
- Cannot handle extreme configurations

Related papers

1. Midpoint patch:

P. Salvi, T. Várady, *Multi-sided surfaces with fullness control*. GrafGeo Conference Proceedings, pp. 61–69, 2016.

- Tansfinite interpolation with S-patches:

 P. Salvi, G¹ hole filling with S-patches made easy.
 KÉPAF Conference Proceedings, #1, 2019.
- 3. Generalized Bézier patch:

T. Várady et al., *A Multi-sided Bézier patch with a simple control structure*. **Computer Graphics Forum**, Vol. 35(2), pp. 307–317, 2016.

4. Generalized B-spline patch:

M. Vaitkus et al., *Multi-sided B-spline surfaces over curved, multi-connected domains.* Computer Aided Geometric Design, Vol. 89, #102019, 2021.

https://3dgeo.iit.bme.hu/