

Impressions of the ICFP'08
Programming Contest

Peter Salvi, Huang Jianshi

Image from NASA

Agenda

 What is ICFP?
 Overview of the contest
 This year's problem
 Solution outline
 LISP in action
 Demo
 Summary

Original animation from www.sooner-robotics.org

ICFP

 International Conference on Functional
Programming

 Annual programming contest (since 1998)
− Results made public at the conference

 Declarations of “honor”:
− 1st place: The programming language of choice for

discriminating hackers
− 2nd place: A fine tool for many applications
− Lightning division: Very suitable for rapid

prototyping

Previous Contests – 2004

 Organizer: University of Pennsylvania;
Ant colony with state-machine ants

Previous Contests – 2005

 Organizer: PLT Group;
Cop & Robber bot programming

Previous Contests – 2006

 Organizer: Carnegie Mellon University;
Decipher and emulate the ancient codex
machine (UMIX), then solve the problems left
by the ancient people

Previous Contests – 2007

 Organizer: Utrecht University;
Help an alien to acclimatize by altering its
DNA-string with a two-stage virtual machine

This year's contest

 July 11 – 14 (Friday (Saturday) – Monday)
 Organizer: Portland State University &

University of Chicago
 Theme: Guide a Martian rover on hostile terrain

to its home base through a TCP/IP connection
 24 hours for the lightning round
 Submit binaries for a Linux LiveCD

... and thus the team Epsilon was formed...

Organization

 Wiki pages (e.g. FAQ)
 Mailing list
 IRC channel
 RSS feed of the changes on the homepage
 Graphical server for the rover (written in SML)
 While the contest was running:

− Task description made more clear
− New programs for the LiveCD
− Bugfixes for the server

Programming Languages

 Results announced at ICFP'08 (Sept. 22-24)
 Several videos and slides on the net
 336 submission (+ 140 lightning round)
 Languages:

− Java, Python, C++
− Haskell, ML-family
− ...
− Lisp (only 7)
− Many others (LaTeX (!))

Participants

 Participants from various countries
 Japan: 106 (!) [USA: 192]

The Problem

 Communicate with the rover by TCP/IP
 Information rate: about 10 messages / second
 Messages contain terrain data:

− Boulders, craters and Martians (everything circular)
− Elliptical view

Vehicle Model

 Control: turn left / turn right / accelerate / brake
 The rover is a double state machine:

Map

 On every map, there
are five runs, with
different starting
positions

 Only the best three
counts

 Home base is at the
center

 Map size, number of
objects and other
parameters vary

Theory of a Solution

 Modules:
− Communication
− Parser
− Mapper
− Route Planner
− Vehicle Controller
− Logger / Visualizer

(for debugging)
 Go from abstract to

concrete

Communication

Vehicle Controller Parser

Route Planner Mapper

Database

Route Planner

 Simplest method: just go for the home base
 We actually used this, with modifications:

− If there is some obstruction ahead, go for the
closest of the two tangent points on the perimeter

Martians are
treated as
circular objects
(the radius is a
parameter
depending on its
visible speed)

Route Planner

 Problematic case:

 Good points:
− No “drunk driver” effect
− Simple & fast, straightforward method

 Solution:
When both directions
are blocked, it tries to
turn left/right until there
is no obstruction in a
given distance

 Remembers the
direction it has chosen

Route Planner

 Real problems:
− Martians are simplified too much

 Approximate by ellipses (just a bit more complex)
 Do a real simuation and evasion (time-consuming)

− Only one point is considered (no real planning)

− The specified destinations may not be reachable

Ideal path

Route Planner

 We can use an A* search
− The nodes are points of a dynamic grid
− Guarantees that we can reach the base (if the world

is known)

Route Planner

 We can use an A* search
− The nodes are points of a dynamic grid
− Guarantees that we can reach the base (if the world

is known)

Mapper

 Stores
− All persistent objects (= not Martians)
− Martians

 Only the last few
 In a fixed-size queue
 Recent Martians are remembered even if not visible

 Storage method
− Simple list (for simple planning)
− Dynamic grid (for A* search)

Dynamic Grid

 Quadtree (2D binary tree)

 Fixed number of points in every cell

 For every object there should be points at a short distance

Motion Control

 Actual movement is calculated by
− Speed (S

t
)

− Acceleration / Breaking (a, init. value unknown)
− Drag coefficient (k, init. value unknown)

 The angle can be computed by:
− Soft turn speed
− Hard turn speed

Motion Control

 Goal:
− Make the rover move along the path as fast as

possible within acceptable errors.

Motion Control

 The 3 main parts of the controller:
− Rover's movement model
− Input / Output
− Control algorithm

Motion Control

 Model
− The rover model is ideal (as specified in the task)
− The motion equation:

Motion Control

 Input
− Distance to the path
− Angle to the path's tangent line

 Output
− Acceleration
− Angular acceleration

Motion Control

 We didn't solve any DEs...：）
 Simulation-based control algorithm

− Simple and effective
− Proportional gain is enough
− Less parameter tuning
− But more computation-expensive (not a problem)

Motion Control

 Other
− Finally the controller converts the numerical values

to commands that the rover can understand
− Parameter tuning:

 Only trial-and-error
 Most important parameters:

− Simulation period
− Threshold for the soft / hard turn

Motion Control

 Problems
− May oscillate at sudden turns
− We do not brake

 We want to go fast!
 The solution space would become two-dimensional (an

optimization algorithm is preferred than hand-tuning)

Messages

 Every message consists of:
− An identifier (one character)
− Data (objects are divided by yet another identifier)
− Semicolon

 Objects are messages without a semicolon
 I dx dy time-limit min-sensor max-sensor ... ;
 T time-samp vehicle-ctl ... object* ;
 b x y radius
 m x y direction speed

Internal Message Format

 A message like

T 123 aL ... b 13.5 23.47 4.3 m 3.2 4 45 4.1 ;

... would be rendered as

Parser

 We want to program like this: This is a message

These are objects

Parser

 We would like an expansion like this:

Hash table of the
message handlers

Takes a semicolon or gives an error

The result is an
alist of the data

Parser

 The macro:

Generates names like parser-telemetry

Parser

 The main parser is very easy now:

 ... of course, this is just one step; higher levels
of abstractions can be built over this

Logging

 Very important for debugging
 Should be able to

− Turn off instantly (with no efficiency drawback)
− Select logging method
− Visualize (later)

 Perfect chance to use macros
− Even in C(++) it is usually done by macros:

#ifdef DEBUG
 ...
#endif

Logging Macro – Usage Example

Logging Macro - Properties

 Change (and recompile) only some main function
to refine the logging parameters

− Where does the log go
− What subsets should be logged

 Set *LOGGING* to NIL and recompile everything,
and there will be no trace of logging left

 WITH-LOGS just calls WITH-LOG recursively:

Logging Macro

 The setup macro:

Hash of streams/options

Logging Macro

 And the logging macro:

 Simple, but very efficient
 Less code duplication, more control

PostScript Logs

 “Graphical logs” are easy
with PostScript

 PostScript is a stack
language, like Forth

PostScript Logs

 Now define some colors and set the map size:

 This allows us to write simple definitions for the
objects on the map

PostScript Logs

 The actual logs look like this:

PostScript Logs

 The output:

Log Visualization

 ... but on the contest we have used CL-SDL
 The logs were output in a format that can be

read (almost) directly as a list of CLOS objects
 The kth line of the log is of the format:

... where ROVER, MARTIAN, BOULDER, etc.
are all CLOS class names

Log Visualization

 Read with READ and call MAKE-INSTANCE on
its children to create the objects

 In the main loop, just read a frame and call a
display method on every object

 Optimization: log only new objects (ie. Objects
not seen before and Martians)

 The whole visualization environment, including
everything, is about 100 lines of code

Demos

Conclusion

 We have used SBCL to generate an executable
 Our rover only got to the 7th map
 But it was a lot of fun!
 Next year @ Edinburgh!

− http://icfpconference.org/
− Maybe with more Lispers?

 Slides (English and Japanese) can be found at:

http://www.den.rcast.u-tokyo.ac.jp/~salvi/archives/text.html

http://icfpconference.org/

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

