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ICFP

 International Conference on Functional 
Programming

 Annual programming contest (since 1998)
− Results made public at the conference

 Declarations of “honor”:
− 1st place: The programming language of choice for 

discriminating hackers
− 2nd place: A fine tool for many applications
− Lightning division: Very suitable for rapid 

prototyping



  

Previous Contests – 2004

 Organizer: University of Pennsylvania;
Ant colony with state-machine ants



  

Previous Contests – 2005

 Organizer: PLT Group;
Cop & Robber bot programming



  

Previous Contests – 2006

 Organizer: Carnegie Mellon University;
Decipher and emulate the ancient codex 
machine (UMIX), then solve the problems left 
by the ancient people



  

Previous Contests – 2007

 Organizer: Utrecht University;
Help an alien to acclimatize by altering its
DNA-string with a two-stage virtual machine



  

This year's contest

 July 11 – 14 (Friday (Saturday) – Monday)
 Organizer: Portland State University & 

University of Chicago
 Theme: Guide a Martian rover on hostile terrain 

to its home base through a TCP/IP connection
 24 hours for the lightning round
 Submit binaries for a Linux LiveCD

... and thus the team Epsilon was formed...



  

Organization

 Wiki pages (e.g. FAQ)
 Mailing list
 IRC channel
 RSS feed of the changes on the homepage
 Graphical server for the rover (written in SML)
 While the contest was running:

− Task description made more clear
− New programs for the LiveCD
− Bugfixes for the server



  

Programming Languages

 Results announced at ICFP'08 (Sept. 22-24)
 Several videos and slides on the net
 336 submission (+ 140 lightning round)
 Languages:

− Java, Python, C++
− Haskell, ML-family
− ...
− Lisp (only 7)
− Many others (LaTeX (!))



  

Participants

 Participants from various countries
 Japan: 106 (!) [USA: 192]



  

The Problem

 Communicate with the rover by TCP/IP
 Information rate: about 10 messages / second
 Messages contain terrain data:

− Boulders, craters and Martians (everything circular)
− Elliptical view



  

Vehicle Model

 Control: turn left / turn right / accelerate / brake
 The rover is a double state machine:



  

Map

 On every map, there
are five runs, with
different starting
positions

 Only the best three
counts

 Home base is at the
center

 Map size, number of
objects and other
parameters vary



  

Theory of a Solution

 Modules:
− Communication
− Parser
− Mapper
− Route Planner
− Vehicle Controller
− Logger / Visualizer

(for debugging)
 Go from abstract to 

concrete

Communication

Vehicle Controller Parser

Route Planner Mapper

Database



  

Route Planner

 Simplest method: just go for the home base
 We actually used this, with modifications:

− If there is some obstruction ahead, go for the 
closest of the two tangent points on the perimeter

Martians are 
treated as 
circular objects 
(the radius is a 
parameter 
depending on its 
visible speed)



  

Route Planner

 Problematic case:

 Good points:
− No “drunk driver” effect
− Simple & fast, straightforward method

 Solution:
When both directions 
are blocked, it tries to 
turn left/right until there 
is no obstruction in a 
given distance

 Remembers the 
direction it has chosen



  

Route Planner

 Real problems:
− Martians are simplified too much

 Approximate by ellipses (just a bit more complex)
 Do a real simuation and evasion (time-consuming)

− Only one point is considered (no real planning)

− The specified destinations may not be reachable

Ideal path



  

Route Planner

 We can use an A* search
− The nodes are points of a dynamic grid
− Guarantees that we can reach the base (if the world 

is known)



  

Route Planner

 We can use an A* search
− The nodes are points of a dynamic grid
− Guarantees that we can reach the base (if the world 

is known)



  

Mapper

 Stores
− All persistent objects (= not Martians)
− Martians

 Only the last few
 In a fixed-size queue
 Recent Martians are remembered even if not visible

 Storage method
− Simple list (for simple planning)
− Dynamic grid (for A* search)



  

Dynamic Grid

 Quadtree (2D binary tree)

 Fixed number of points in every cell

 For every object there should be points at a short distance



  

Motion Control

 Actual movement is calculated by
− Speed (S

t
)

− Acceleration / Breaking (a, init. value unknown)
− Drag coefficient (k, init. value unknown)

 The angle can be computed by:
− Soft turn speed
− Hard turn speed



  

Motion Control

 Goal:
− Make the rover move along the path as fast as 

possible within acceptable errors.



  

Motion Control

 The 3 main parts of the controller:
− Rover's movement model
− Input / Output
− Control algorithm



  

Motion Control

 Model
− The rover model is ideal (as specified in the task)
− The motion equation:



  

Motion Control

 Input
− Distance to the path
− Angle to the path's tangent line

 Output
− Acceleration
− Angular acceleration



  

Motion Control

 We didn't solve any DEs...：）
 Simulation-based control algorithm

− Simple and effective
− Proportional gain is enough
− Less parameter tuning
− But more computation-expensive (not a problem)



  

Motion Control

 Other
− Finally the controller converts the numerical values 

to commands that the rover can understand
− Parameter tuning:

 Only trial-and-error
 Most important parameters:

− Simulation period
− Threshold for the soft / hard turn



  

Motion Control

 Problems
− May oscillate at sudden turns
− We do not brake

 We want to go fast!
 The solution space would become two-dimensional (an 

optimization algorithm is preferred than hand-tuning)



  

Messages

 Every message consists of:
− An identifier (one character)
− Data (objects are divided by yet another identifier)
− Semicolon

 Objects are messages without a semicolon
 I dx dy time-limit min-sensor max-sensor ... ;
 T time-samp vehicle-ctl ... object* ;
 b x y radius
 m x y direction speed



  

Internal Message Format

 A message like

T 123 aL ... b 13.5 23.47 4.3 m 3.2 4 45 4.1 ;

... would be rendered as



  

Parser

 We want to program like this: This is a message

These are objects



  

Parser

 We would like an expansion like this:

Hash table of the
message handlers

Takes a semicolon or gives an error

The result is an 
alist of the data



  

Parser

 The macro:

Generates names like parser-telemetry



  

Parser

 The main parser is very easy now:

 ... of course, this is just one step; higher levels 
of abstractions can be built over this



  

Logging

 Very important for debugging
 Should be able to

− Turn off instantly (with no efficiency drawback)
− Select logging method
− Visualize (later)

 Perfect chance to use macros
− Even in C(++) it is usually done by macros:

#ifdef DEBUG
   ...
#endif



  

Logging Macro – Usage Example



  

Logging Macro - Properties

 Change (and recompile) only some main function 
to refine the logging parameters

− Where does the log go
− What subsets should be logged

 Set *LOGGING* to NIL and recompile everything, 
and there will be no trace of logging left

 WITH-LOGS just calls WITH-LOG recursively:



  

Logging Macro

 The setup macro:

Hash of streams/options



  

Logging Macro

 And the logging macro:

 Simple, but very efficient
 Less code duplication, more control



  

PostScript Logs

 “Graphical logs” are easy 
with PostScript

 PostScript is a stack 
language, like Forth



  

PostScript Logs

 Now define some colors and set the map size:

 This allows us to write simple definitions for the 
objects on the map



  

PostScript Logs

 The actual logs look like this:



  

PostScript Logs

 The output:



  

Log Visualization

 ... but on the contest we have used CL-SDL
 The logs were output in a format that can be 

read (almost) directly as a list of CLOS objects
 The kth line of the log is of the format:

... where ROVER, MARTIAN, BOULDER, etc. 
are all CLOS class names



  

Log Visualization

 Read with READ and call MAKE-INSTANCE on 
its children to create the objects

 In the main loop, just read a frame and call a 
display method on every object

 Optimization: log only new objects (ie. Objects 
not seen before and Martians)

 The whole visualization environment, including 
everything, is about 100 lines of code



  

Demos



  

Conclusion

 We have used SBCL to generate an executable
 Our rover only got to the 7th map
 But it was a lot of fun!
 Next year @ Edinburgh!

− http://icfpconference.org/
− Maybe with more Lispers?

 Slides (English and Japanese) can be found at:

http://www.den.rcast.u-tokyo.ac.jp/~salvi/archives/text.html

http://icfpconference.org/


  

Thank you for your attention!
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