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Abstract
Visualization of implicit surfaces is an actively researched topic. While raytracing can produce high quality im-
ages, it is not well suited for creating a quick preview of the surface. Indirect algorithms (e.g. Marching Cubes)
create an easily renderable triangle mesh, but the result is often not sufficiently well-structured for a good ap-
proximation of differential surface quantities (normals, curvatures, etc.). Post-processing methods usually have a
considerable computational overhead, and high quality is not guaranteed. We propose a tessellation algorithm to
create nearly isotropic meshes, using multi-sided implicit surfaces.

1. Introduction

Implicit surfaces are one of the main kinds of mathemat-
ical representations used in geometric modelling. Implicit
surfaces facilitate many operations, but others - like direct
visualization - are less efficient. For this reason, when cre-
ating quick interactive previews, often indirect methods like
Marching Cubes1, 2 and variants are used to create meshes
which are then efficiently rendered.

Such meshes, however, often do not have good enough
quality to accurately approximate differential surface quan-
tities. In surface analysis, it is often important to use coloring
based on normal vectors, various curvatures and other mea-
sures to identify potential defects. A mesh directly produced
by Marching Cubes (see e.g. Figure 1) is not useful for that
purpose.

Figure 1: Wireframe and approximated curvature map of a
Marching Cubes mesh.

Fairing and edge transformation methods3 and algorithms
based on different principles4 have been proposed in the
literature. However, these often have a high computational
overhead, many of them are complicated to implement, and
they do not guarantee that the resulting mesh will be free
of anisotropic triangles and vertices with unusually high or
low valencies. For example, in Figure 2, the mesh was pro-
cessed by Laplace fairing, which has considerably improved
the quality of individual triangles, but the mesh still includes
degree 4 or degree 8 nodes where calculating mean curvature
becomes inaccurate.

Therefore, our approach is to first create a well-structured
mesh topology loosely around the surface, and then project
its points onto the implicit surface. In Section 2 we will out-
line our method, and in Section 3 surface examples will be

Figure 2: Wireframe and approximated curvature map of a
Marching Cubes mesh after fairing.
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shown. An assessment of the algorithm will conclude the pa-
per in Section 4.

2. Meshing

Our method works with a space partitioning that divides the
implicit isosurface into several multi-sided pieces each con-
taining only a single surface sheet. One such structure is an
octree, which we subdivide while there are multiple surface
sheets in a cell. However, the algorithm can be used with any
convex partitioning which is made of planar cuts (an exam-
ple will be shown in Subsection 3.2).

First we can create the corner points of the multi-sided
surfaces, which will be the basis of the algorithm. For each
edge of a cell, if its endpoints are on different sides of the
surface, we need to find the intersection point which will be
the corner point. Then for each face of the cell, we connect
the intersections with an edge, so that we have a boundary
loop of the patch.

2.1. Base mesh

Next, a base mesh is created, using an auxiliary paramet-
ric surface, which interpolates the corner points and the
boundaries. The simplest method is to use a generalized
barycentric5 combination of the corner points over a regu-
lar n-sided domain:

p(u,v) =
n

∑
i=1

λipi, (1)

where ∑
n
i=1 λi = 1, and [u,v] = ∑

n
i=1 λi · [ui,vi]. [ui,vi] are

the domain coordinates of the corners of the regular n-gon;
pi are the corner points of the surface. This ensures that the
edges of the patch will run in the appropriate face dividing
the cell from its neighbour.

Alternatively, as the implicit surface can be highly curved,
a simple transfinite parametric surface can be used, like the
multi-sided C0 Coons patch6 which is defined by its bound-
ary curves. If those do not have a simple parametric repre-
sentation, they can be given as dense polylines† evaluated
via tessellating each implicit boundary curve, which is the
intersection of the planar bounding face with the implicit
isosurface.

These surfaces can then be elegantly tessellated by divid-
ing the n-sided polygonal domain into triangles like in Fig-
ure 3.

† As the mesh vertices will be projected onto the surface, the slight
error arising from the inexact curves will not meaningfully affect the
final result.

Figure 3: Triangulation of a pentagon.

2.2. Projection

When projecting the points of the mesh onto the isosur-
face, we must ensure continuous connection to neighbour-
ing patches. For that, we need the points on the edge of the
patch to remain on the face of the cell after projection. We
also want triangles to change their size relative to each other
as few as possible.

We achieve this by defining a projection direction (a 3-
dimensional vector) attribute for each vertex which will pre-
scribe the line, along which the point will be projected. The
projection direction is prescribed in the corners of the patch,
and is then interpolated along the mesh using barycentric co-
ordinates. In the corners, they need to point in the same di-
rection from the isosurface (e.g. into the positive half-space).
See 2-dimensional example in Figure 4.

If the boundary points have to be moved (i.e. we are not
using a base patch with exact boundary points), then at cor-
ner points the direction shall be set as the direction of the
edge of the cell there. This ensures that in edge points the
direction is inside the bounding plane, as it is the weighted
sum of two edges in that plane (all other barycentric coor-
dinates are zeros there). Thus, the projected points will also
remain there.

See Figure 5 for a visualization of these direction vectors.

Now we can use ray marching to find the isosurface point
for each vertex. By checking the sign of the implicit func-
tion in the starting point, we know in which direction the
isosurface lays, relative to the interpolated direction. In the
end, we replace the mesh positions with the projected posi-
tions, getting a mesh representing the piece of the original
isosurface inside the cell. Corner points are not moved, and
if the boundary curves were already approximated, boundary
points stay in place as well.
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Figure 4: 2D example of projection direction interpolation.
Purple: implicit surface, red: prescribed directions, blue: in-
terpolated directions. Signs denote the sign of the implicit
function in that region.

Figure 5: Projection directions visualized on the surface of
a C0 Coons patch.

The above process unfortunately does not guarantee that
correct results are obtained. If the isosurface has high cur-
vature variation or large shape artifacts, the resulting mesh
might contain abrupt jumps or overlapping triangles. We pre-
vent this by checking if the angle between the ray and the
gradient of the surface remains under a prescribed threshold.
If not, the resulting mesh is rejected, and we can try to solve
the problem by subdividing the cell. This typically indicates,
however, that the quality of the implicit surface would not be
acceptable.

Figure 6: Mean curvature map of a Marching Cubes mesh
and by our approach (3-sided surface in a cube cell).

Figure 7: Comparing a Marching Cubes mesh to our ap-
proach (6-sided patch). Top row: mean curvature, bottom
row: isophote lines.

3. Examples

3.1. Cell patches

Surface patches inside cubic cells can easily be compared,
as these can be efficiently tessellated with both Marching
Cubes and the proposed algorithm, and they will represent
the exact same surface. We show such comparisons in Fig-
ures 6, 7 and 8.

3.2. General n-sided patches

In case of general space partitions bounded by planes, the
resulting surface can also be nicely triangulated, as in Fig-
ure 9.

Approach to I-patches defined by control polyhedra

We used a slightly different approach in our recent paper7

where I-patches8 are defined based on control polyhedra,
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Figure 8: Wireframe visualization of a Marching Cubes
mesh (left) and a projected mesh (right). See top row in Ta-
ble 1 for their details.

Marching cubes Projection

Vertices Time Vertices Time

688 20ms 351 4ms

1760 58ms 561 8ms

3881 136ms 1326 14ms

Table 1: Efficiency of generating meshes with various den-
sity from the surface in Figure 8.

Figure 9: Five-sided implicit patch bounded by general con-
figuration planes.

Figure 10: Composite surface built from I-patches triangu-
lated with Marching Cubes (left) and projection (right).

Figure 11: Setback vertex blends represented by I-patches
and rendered via projection.

so the corner points and boundary curves of the individual
patches are known in advance. As a result, the space par-
titions can also be bounded by nonplanar surfaces, and the
boundary curves do not have to be traced. The curves are
then used to construct the multi-sided C0 Coons patch, and
then we project the points onto the mesh. The images in that
paper were generated with this method. An example, com-
pared to Marching Cubes, is shown in Figure 10. The method
works even for patches defined inside concave space parti-
tions, for example in the case of the setback vertex blends9

seen in Figure 11.

4. Conclusion

We have proposed an algorithm for creating good quality
meshes for visualizing smooth implicit surfaces. Our method
gives more accurate results when approximating differential
quantities on the surface, due to the evenly distributed valen-
cies of the mesh vertices. This is an offline algorithm, and
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compared to Marching Cubes, it requires significantly fewer
points to achieve the same level of detail.

However, the algorithm does not necessarily yield correct
results. It may be useful future work to provide conditions
ensuring a good tessellation.
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