I-patch – An implicit representation for multi-sided surfaces

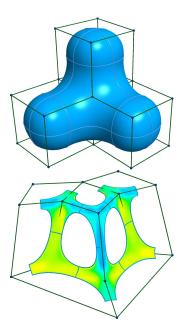
Ágoston Sipos, Tamás Várady, <u>Péter Salvi</u>, Márton Vaitkus

Budapest University of Technology and Economics

Dagstuhl Seminar on Geometric Modeling November 21–26, 2021

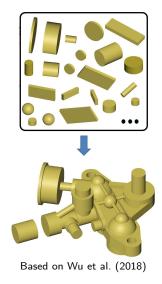
Outline

Motivation


I-patch

Patch equation Reformulation Ribbons & bounding surfaces Discussion

Shape parameters Normalization


Applications

Hole filling & vertex blends Polyhedral design Mesh approximation

Multi-sided free-form patches with implicit surfaces

- Why implicit surfaces?
 - Arbitrary number of sides
 - No parameterization
 - Connection to regular surfaces
 - Intersection is easy
 - Efficient ray casting
 - Efficient point membership
- ► For free-form shapes, as well!
- Recently used for...
 - Fitting with neural networks
 - Topology optimization
 - Sketch-based modeling etc.
- Possible drawbacks
 - Hard to tessellate
 - Rigid
 - Shape problems
 - Geometrically meaningful control?

Outline

Motivation

I-patch

Patch equation Reformulation Ribbons & bounding surfaces

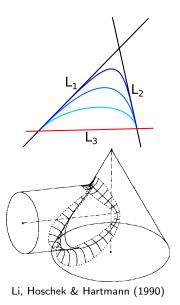
Discussion

Shape parameters Normalization

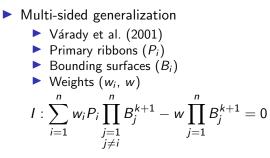
Applications

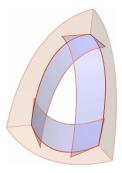
Hole filling & vertex blends Polyhedral design Mesh approximation

Liming curves and functional splines

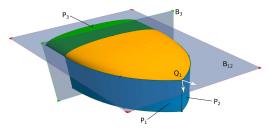

- Liming-formula (1947)
 - Conic sections
 - Based on implicit lines
 - Geometric meaning
 - Fullness parameter (λ)

$$C:(1-\lambda)L_1L_2-\lambda L_3^2=0$$


- Generalization by Li et al. (1990)
 - "Functional splines"
 - Base surface (f)
 - Transversal surface (g)

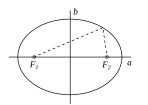

$$S: (1-\lambda)f - \lambda g^{k+1} = 0$$

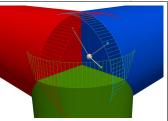
- ▶ Good for *G^k* blends
- Not really multi-sided!



I-patch

Can handle singular vertices

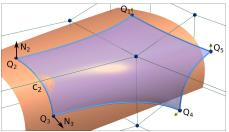

Distance-based formula

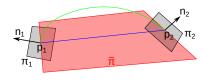

$$I: \sum_{i=1}^{n} w_i P_i \prod_{\substack{j=1\\ j \neq i}}^{n} B_j^{k+1} - w \prod_{j=1}^{n} B_j^{k+1} = 0$$

• Dividing by $\prod_{j=1}^{n} B_j^{k+1}$:

$$\hat{I}: \sum_{i=1}^{n} w_i \frac{P_i}{B_i^{k+1}} = \sum_{i=1}^{n} d_i = w$$

Similar to the ellipse in logic $(E : d_1 + d_2 = 2a)$

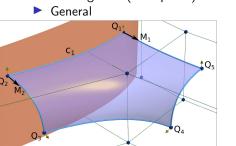



Reproduces the ellipsoid (P_i elliptic cylinders, B_i planes)

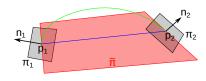
Constructing ribbons & bounding surfaces

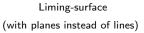

- Hierarchy based on endpoints & end-normals
 - ► Plane + Plane ⇒ Straight
 - Liming-surface + Plane
 ⇒ Conic
 - I-loft + Plane
 - \Rightarrow I-segment (2D I-patch)
 - General

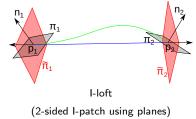
Curved ribbon & planar bounding



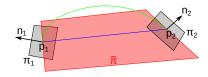
Liming-surface (with planes instead of lines)

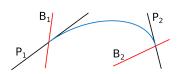



Constructing ribbons & bounding surfaces


- Hierarchy based on endpoints & end-normals
 - ▶ Plane + Plane ⇒ Straight
 - Liming-surface + Plane
 ⇒ Conic
 - I-loft + Plane
 - \Rightarrow I-segment (2D I-patch)

Planar ribbon & curved bounding





Constructing ribbons & bounding surfaces

- Hierarchy based on endpoints & end-normals
 - ▶ Plane + Plane ⇒ Straight
 - Liming-surface + Plane
 ⇒ Conic
 - ► I-loft + Plane ⇒ I-segment (2D I-patch)
 - General

Liming-surface (with planes instead of lines)

 $\begin{array}{c} n_1 \\ \hline n_2 \hline n_2 \\ \hline n_2 \hline \hline n_2 \\ \hline n_2 \hline n_2 \\ \hline n_2 \hline n_2 \hline \hline n_2 \hline$

I-segment

Outline

Motivation

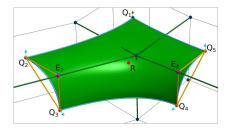
I-patch

Patch equation Reformulation Ribbons & bounding surfaces

Discussion

Shape parameters Normalization

Applications


Hole filling & vertex blends Polyhedral design Mesh approximation

Shape parameters

- Various weights:
 - Liming-surfaces: λ_i
 - ▶ I-lofts: $w_1^{(i)}$, $w_2^{(i)}$, $w^{(i)}$
 - I-patch itself: w_i, w
- Application-dependent
- Ribbon/bounding parameters often fixed
- Default weights normalize the distance fields at a "central" reference point R:

$$d_i(\mathbf{R}) = w_i \frac{P_i(\mathbf{R})}{B_i(\mathbf{R})^{k+1}} = \pm 1$$

Use w to interpolate R

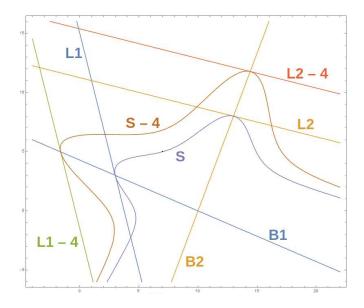
Alternative:

- Minimize fairness energy
- Mesh-based

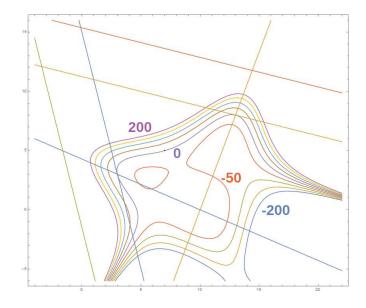
Distance field

- ► Good SDF needed for offset, intersection, approximation etc.
- Not Euclidean (even with a good scalar multiplier)
- Simple approximation: Division by gradient norm (f̂ = f/||∇f||)
- Reinterpretation of I-patches as weighted ribbons:

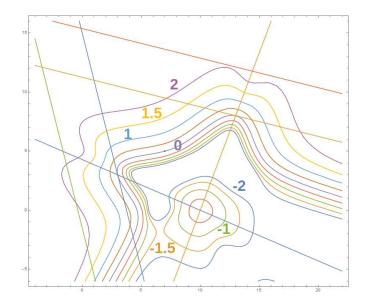
$$I: \sum_{i=1}^{n} P_i \cdot \alpha_i = w, \qquad \alpha_i = \frac{w_i}{B_i^{k+1}}$$

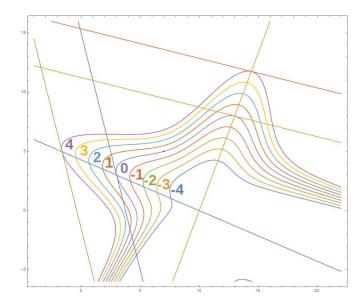

Normalize by dividing with the sum of blends:

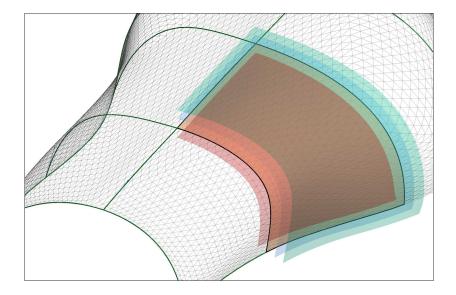
$$\hat{I}: \frac{\sum_{i=1}^{n} P_i \cdot \alpha_i - w}{\sum_{i=1}^{n} \alpha_i} = 0$$


Algebraic offset is also a normalized I-patch:

$$\hat{I} - d = \frac{\sum_{i=1}^{n} (P_i - d) \cdot \alpha_i - w}{\sum_{i=1}^{n} \alpha_i}$$


2D Example - Offset with "faithful" normalization


2D Example – No normalization


2D Example – Gradient normalization

2D Example - "Faithful" normalization

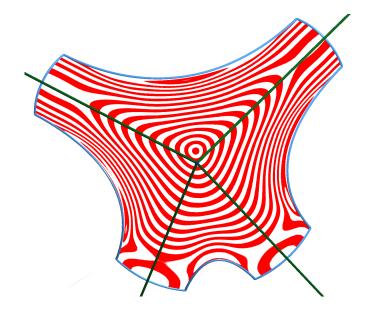
3D Example – Offset surfaces

Outline

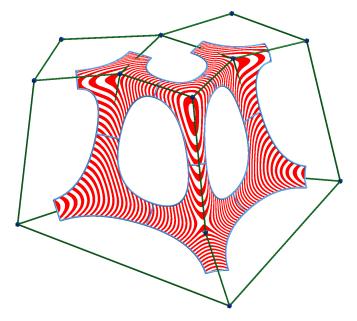
Motivation

I-patch

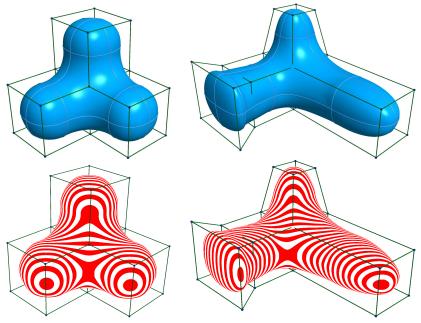
Patch equation Reformulation Ribbons & bounding surfaces

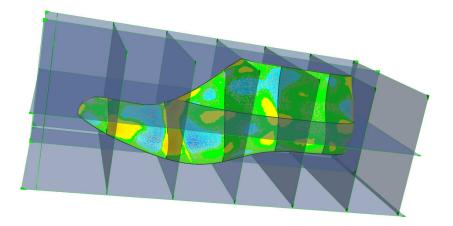

Discussion

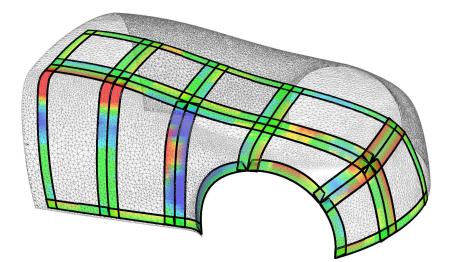
Shape parameters Normalization

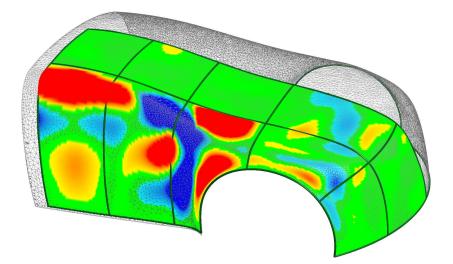

Applications

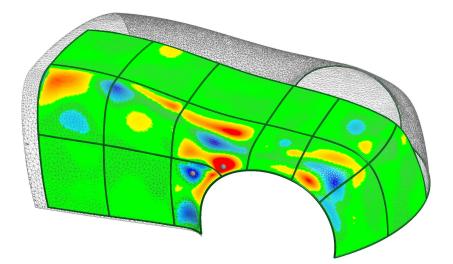
Hole filling & vertex blends Polyhedral design Mesh approximation

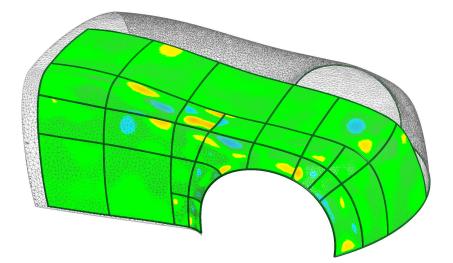

Setback vertex blends – 8-sided with isophotes


Setback vertex blends - Six patches with contours




Polyhedral design




Mesh approximation – Cell-based subdivision

Outline

Motivation

I-patch

Patch equation Reformulation Ribbons & bounding surfaces

Discussion

Shape parameters Normalization

Applications

Hole filling & vertex blends Polyhedral design Mesh approximation

- A few steps towards "usable" implicit, multi-sided patches
- Geometric reinterpretation
- Ribbon & bounding surface constructions
- Faithful normalization
- Applications
 - Vertex blends
 - Polyhedral modeling
 - Mesh approximation
- Tessellation & handling common shape problems
- Future work
 - More geometric meaning to the shape parameters
 - Increase robustness
 - Implementation on the GPU

Any questions?

https://github.com/agostonsipos/l-patch/ Budapest University of Technology and Economics https://3dgeo.iit.bme.hu/