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A B S T R A C T

I-patches represent a family of implicit multi-sided surfaces. Similarly to functional
splines, each boundary curve of the patch is defined as the intersection of a primary and
a bounding surface, both given in implicit form, and the patch can connect to the pri-
maries with arbitrary geometric continuity. Following the publication of Várady et al.
[1], this paper elaborates the basic formulation in more detail, and introduces several
interesting features, including a distance-based surface interpretation, consistent orien-
tation of the primaries, setting shape parameters, and handling various special cases.

Implicit multi-sided patches are primarily used for connecting simple implicit sur-
faces, such as planes, cylinders, spheres etc., however, I-patches are also capable of
modeling complex free-form shapes. We show constructions for producing setback
vertex blends with conic boundaries and patchworks defined by control polyhedra. We
discuss the benefits and limitations of the representation through several examples.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Surface modeling with multi-sided patches is dominated by
representations given in parametric form [2, 3, 4]; however,
there are various design situations, where the use of implicit
multi-sided patches is preferable: (i) Creating accurate connec-
tions to surfaces given in implicit form, in particular to planes
and natural quadrics, e.g. in hole filling, vertex blending and
lofting. (ii) Defining a complex free-form object by a con-
trol polyhedron and obtaining a collection of smoothly con-
nected patches, where the implicit form is beneficial since reg-
ular shapes can also be incorporated. (iii) Approximating com-
plex surfaces defined by vector fields of distances and gradi-
ents, e.g. cell-based representations and marching surface tech-
niques.

Parametric surface representations offer a great versatility in
shape design and analysis; however, for mapping a planar do-
main to 3D we need some intrinsic parameterization, and this
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is a delicate issue. While it is easy to tessellate parametric sur-
faces, there are several geometric interrogations that proved to
be computationally demanding, e.g. intersections and joining
trimmed patches.

Among implicit surface representations, algebraic polynomi-
als are mostly used to represent simple regular surfaces. Rep-
resenting free-form shapes is not easy, as high-degree algebraic
polynomials may produce various shape problems, such as sin-
gularities, self-intersections, and disconnected parts. Implicit
surfaces are more rigid than parametrics, and editing the shape
interior is a real challenge, as there are no obvious control struc-
tures to do so. They are generally C∞-continuous, representing
half-spaces, so point membership classification is easy. No pa-
rameterization is needed for distance computations and approx-
imating data points. Implicit surfaces are favorable in photo-
realistic rendering, due to their computational efficiency in ray
tracing (see e.g. [5, 6]).

In this paper we revisit the classical arena of implicit repre-
sentations, and attempt to significantly enhance the I-patch con-
cept of Várady et al. [1], published almost two decades ago. In
some sense, I-patches are similar to transfinite schemes, where
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(a) Conic primary and
planar bounding surfaces

(b) Contours (c) Contours after chang-
ing the interior fullness

Figure 1: A simple 3-sided I-patch.

boundary curves and cross-derivatives – given in parametric
form – are blended together in a smooth, somewhat control-
lable manner. I-patches interpolate a loop of boundary curves,
where each segment is defined as the intersection of a primary
and a bounding surface, both given in implicit form (similarly
to functional splines [7]). A simple 3-sided example is shown
in Figure 1. Three primaries (conic sweeps) and three bound-
ing surfaces (planes) define the boundary constraints for the two
patches in Figs. 1b and 1c; this also illustrates that there is some
degree of freedom to control the fullness of the patch, i.e., the
curvatures in the interior, as will be explained later).

I-patches smoothly connect to the primaries with G1, G2 or
higher degree geometric continuity (see Section 3). The pri-
mary surfaces may be a priori determined, or often they are cre-
ated artificially to satisfy positional and tangential constraints
along given boundaries; in this case we prefer to use the term
(primary) ribbon. Our current interest is to elaborate multi-
sided implicit surface representations that play a somewhat sim-
ilar role as their parametric counterparts, i.e., we wish to (i) con-
strain and edit the boundaries of the shape, and (ii) possibly
modify its interior while avoiding awkward twists and self-
intersections. At the same time, we wish to exploit the advan-
tages of having exact, algebraic representations.

The paper is structured as follows. After reviewing prior
work in Section 2, we revisit the basic theory of I-patches, sup-
plemented by a new, distance-based interpretation (Section 3).
We continue with the construction of ribbons and bounding sur-
faces in Section 4, and focus on I-patches with conic bound-
aries. This is followed by two potential application areas – ver-
tex blending and polyhedral design (Section 5). In Section 6 we
discuss some special cases and related difficulties that need to
be handled, then compare I-patches to alternative formulations
and show a few test examples. Suggestions for future research
conclude the paper.

2. Previous work

Implicit surfaces have an extensive literature, related to a
wide range of topics, including scattered data interpolation, ap-
proximation, ray tracing, etc. For a general introduction, see
the classic book on the subject [8]. In this paper, we are mainly
interested in blending and modeling with implicit surfaces, as

well as in methods of tessellation. The rest of this section is
organized around these keywords.

2.1. Blending

Creating a smooth blend between two or more surfaces is
a basic operation in CAD systems. Implicit blending sur-
faces were introduced in the seminal paper of Hoffmann and
Hopcroft [9], and many important problems – like unwanted
bulges and discontinuities – were identified and resolved by
the displacement blend [10]. The superelliptic blend used in
this method still had gradient discontinuities, which can be
avoided by replacing the standard set-theoretic CSG operators
of Ricci [11] with F-rep [12], based on R-functions, or soft
blending [13], which satisfies a Lipschitz condition. Recent
developments include gradient-based operators [14] and better
topology control [15].

There is also another approach to blending – the one followed
by this work –, where the boundaries of the created surface
are explicitly defined (in contrast to just specifying a blending
range). As outlined in the Introduction, the boundary curves are
determined from the intersection of a primary and a bounding
surface. The generated patch interpolates these curves, while
smoothly connecting to the primary surfaces. (For the defini-
tion of geometric continuity in an implicit context, see [16].)

The feasibility and minimal degree of this construction was
explored in [17], which gives explicit equations, based on Bé-
zout’s theorem, for the interpolation of Hermite boundary con-
ditions with implicit surfaces, resulting in a linear system.
While a direct fit gives important insights, the eligible solu-
tions often include highly curved and self-intersecting surfaces,
which are difficult to filter out. (See also Section 6.2.2 for an
example.)

Functional splines [7, 18, 19, 20], on the other hand, take a
more pragmatic approach, by defining the patch as a blend be-
tween a base and a transversal surface, generalizing Liming’s
conic formula [21]. In our setting, these correspond to the prod-
ucts of the primary and bounding surfaces, respectively. The ex-
act patch equation can be found in Section 6.2.1, along with an
example and comparisons to our method. The bounded blend
of Pasko et al. [22] also defines boundaries as the intersections
of primaries and a single bounding surface, while ensuring that
the latter contains the entire blend.

The present work is based on I-patches [1], which is defined
as the weighted sum of mixed products between primary and
bounding surfaces – see Section 3 for details. (Note that a sim-
ilar idea had already appeared in [23].)

2.2. Modeling

Implicit surface modeling is generally done by CSG opera-
tions, extended by blending [24]. This also allows sketch-based
modeling [25, 26]. However, these methods generate “blobby”
objects, suitable mainly for organic models and animations.

Warren [27] proposes local fitting of implicit surfaces in a
subdivision of 3D space (e.g. a simplicial mesh), in this way
avoiding the problems of higher-order interpolation. The im-
plicit surface is defined as an interpolant of values at given
vertices. Continuity constraints at the vertices are computed



Preprint / Computers & Graphics (2020) 3

from a user-defined collection of planes embedded in the mesh
– in other words, a control polyhedron. Depending on the inter-
polant used, the surface can exactly interpolate the values at the
vertices or approximate them with additional smoothness.

Algebraic splines and A-patches [28, 29] are very similar, in
that they are also defined in simplexes. In 3D, the generated
patches are always 3- or 4-sided. It can be proved that the 3-
sided implicit surfaces defined in tetrahedra have at most one
intersection with a line going through the apex, so there will
be no self-intersections; a comparable assertion is known for 4-
sided surfaces, as well. The construction is such that C1 or C2

continuity between the patches can be ensured, and the remain-
ing degrees of freedom can be used for (local and/or global)
shape adjustment.

A framework for polyhedral design with implicit surfaces
was published in [30], generating a C1-continuous set of sur-
faces from a triangular mesh, using the interpolation method
of [17].

As we will see, I-patches can be used for complex hole filling
problems, such as the setback vertex blend (Section 5.1), and
for modeling with arbitrary topology polyhedra (Section 5.2).

2.3. Tessellation

There is a plethora of polygonization methods for implicit
surfaces; see [31] for a general survey. In our context, since
the isosurface may have several branches from which we need
to display only one, region growing methods, such as [32, 33],
are favorable. Alternatively, we propose a simple and efficient
method that generates high-quality meshes using an auxiliary
parametric surface (see Section 6.4 for details).

3. I-Patches

In this section we revisit I-patches, and show a new interpre-
tation based on distances.

3.1. Basic concept

Multi-sided I-patches are defined by a loop of 3D curves;
each curve ci is the intersection of two surfaces given in implicit
form ci = {Pi = 0}

⋂
{Bi = 0}, where Pi(x, y, z) = 0 denotes the

primary surface to which the patch will smoothly connect, and
Bi(x, y, z) = 0 denotes the bounding surface that defines the
intersection. The equation of I-patches in Várady et al. [1] was
given in the following polynomial form:

I(x, y, z) =

n∑
i=1

wiPi

∏
j,i

B2
j + w0

n∏
j=1

B2
j = 0, (1)

where the wi-s are scalar weights associated with the individual
sides, and w0 is a central weight that influences the fullness of
the patch. It is easy to demonstrate this concept with a 3-sided
patch, given as

I(x, y, z) =

w1P1B2
2B2

3 + w2P2B2
3B2

1 + w3P3B2
1B2

2 + w0B2
1B2

2B2
3 = 0.

(2)

Figure 2: Two primary surfaces intersected by the same bounding plane.

This I-patch will interpolate the boundary curves. For exam-
ple, take the curve c1. The first term will be zero due to P1 = 0,
the other three terms due to B1 = 0. This also shows that the
effect of P1 will gradually vanish as we get close to side 2 or 3,
where the bounding functions B2 and B3 become zero.

The I-patch will smoothly connect to the primaries, since its
gradient vector will be parallel to them. For example, take again
boundary curve c1, and write the equation as I = P1G + B2

1H.
Then

∇I =

∇P1G + P1∇G + 2B1∇B1H + B2
1∇H = const · ∇P1, (3)

since the second, third and fourth terms equal to zero on ci. In
an analogous way, G2 or higher degree geometric continuity to
the primaries can be achieved, if the exponent of the bounding
surfaces is three or higher.

3.2. Remarks

It should be noted that at the corners of the I-patches, where
two primaries and two bounding surfaces meet, the gradient
vector is always zero. Take, for example, the corner of c1 and
c2, then the G function in the above expression will be zero due
to B2 = 0, so the gradient will vanish, as well. This can be
an advantage or a disadvantage. If two primaries at the corner
share a common tangent plane, the normal vector of the I-patch
will be uniquely determined. However, if not, a singular vertex
is created, see for example point Q1 in Figure 2.

Another special case to be investigated is when two (or more)
bounding surfaces coincide. We demonstrate the problem again
through a 3-sided patch. Assume that we have three boundaries
P1

⋂
B12, P2

⋂
B12, and P3

⋂
B3. Then we can factor out B2

12
from the equation to obtain

I(x, y, z) =

B2
12

(
w1P1B2

3 + w2P2B2
3 + w3P3B2

12 + w0B2
12B2

3

)
= 0, (4)

which is a branching surface, since neither of the terms inter-
polates all sides. The solution to this problem is to collect all
primary surfaces that belong to the same boundary, and handle
them as a single surface in the form of their product. Taking our
example,

I(x, y, z) = w12(P1P2)B2
3 + w3P3B2

12 + w0B2
12B2

3 = 0 (5)
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will yield the correct result. Note that we can assign only a
single weight to P1P2. An example is shown in Figure 2. This
I-patch (orange) connects to three curved primary surfaces; the
two blue primaries (vertical sweeps) are intersected by the same
planar bounding surface.

It is easy to constrain an I-patch to interpolate an arbitrary
3D point (x0, y0, z0). Assuming that the weights wi have already
been fixed, then the value w0 can be determined by solving the
equation I(x0, y0, z0) = 0, where w0 is the only unknown. Fig-
ure 1 shows two variants of a 3-sided patch interpolating two
different reference points in the middle.

3.3. Distance-based interpretation
Here we show that I-patches can also be interpreted based

on distances. This helps to better understand the formulation
and set certain shape parameters. A somewhat similar approach
occurs in classical geometry, as well. Take an ellipse and its
implicit equation x2/a2 + y2/b2 − 1 = 0, a ≥ b. It can be in-
terpreted as the locus of points, where the sum of the Euclidean
distances from two focal points is constant, i.e.,

d1(x, y) + d2(x, y) = ‖(x, y) − F1‖ + ‖(x, y) − F2‖ = 2a, (6)

where F1 = (−c, 0), F2 = (c, 0) and c2 = a2 − b2.
We generalize this for I-patches and combine distances from

the primitive surfaces. We may take di = Pi(x, y, z) and search
for the locus of points where

∑n
i=1 di = d0; however, in order to

ensure the interpolation property, we need to involve the bound-
ing surfaces, as well, and apply weighted algebraic distances di

in the form of di = wiPi/B2
i . These can be derived from the

polynomial I-patch equation, if we divide all terms by
∏n

j=1 B2
j .

For example, a 3-sided I-patch in rational form is the following:

I(x, y, z) =

d1 + d2 + d3 − d0 =
w1P1

B2
1

+
w2P2

B2
2

+
w3P3

B2
3

+ w0 = 0.

(7)

In fact, it is easy to show that distance-based I-patches can re-
produce certain standard implicit surfaces. For example, com-
bining three primaries of orthogonal elliptic cylinders and three
related planar bounding surfaces, one can exactly reproduce an
ellipsoid:

I(x, y, z) =

x2

a2 +
y2

b2 − 1

z2 +

y2

b2 +
z2

c2 − 1

x2 +

z2

c2 +
x2

a2 − 1

y2

+

(
1
a2 +

1
b2 +

1
c2

)
(8)

=

(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

(x2y2 + y2z2 + z2x2)

x2y2z2 . (9)

(See Section 4.6 on how to set w0.) This expression contains the
equation of the ellipsoid multiplied by a second term, which is
an isolated point at the origin. When a = b = c = 1, we
obtain an octant of a sphere with unit radius. In Figure 3 we
show a sequence of isosurfaces d1 = w1P1/B2

1 = const. The

Figure 3: Different isosurfaces of a weighted algebraic distance.

combination of this sort of algebraic distance fields produce
the final I-patch.

The distance-based formula nicely works for the interior
points of the patch; however, it degenerates to 0/0 expressions
in the vicinity of boundary curve ci. In order to avoid this, we
use another formula, multiplying the equation by B2

i /wi. For
example,

I(x, y, z) = P1 +

 n∑
i=2

di + d0

 B2
1/w1 = 0. (10)

At the points of c1 both terms are zero; in the close vicinity of c1
the quadratic expression B2

1/w1 remains small, thus the I-patch
behaves as P1, satisfying our expectations.

The distance-based formulation helps to efficiently evaluate
the surface in the interior, and set the individual weights wi (see
Section 4.6).

4. Constructing I-patches

In this section we discuss how to construct the components
of I-patches, including boundaries, primary ribbons and bound-
ing surfaces. We explain how to orient them, and what are the
options for shape editing.

The I-patch has n corner points denoted by Qi (Figure 4),
and for each there is a well-defined tangent plane πi with nor-
mal vector Ni (see concrete constructions in Section 5). Each
primary ribbon Pi interpolates the i-th boundary curve and sat-
isfies the tangential constraints at the related two corners. We
deal with straight boundaries, conic boundaries, I-segments and
general boundary curves.

4.1. Straight boundaries
The simplest case is when the tangent planes πi and πi+1 are

identical, containing the desired straight segment QiQi+1. Then
Pi is directly defined, and Bi will be a plane orthogonal to Pi,
containing both Qi and Qi+1.

4.2. Conic boundaries
A conic boundary ci is defined by a control triangle, using

Liming’s formula [21], as follows. Take the corner points and
pick a middle control point (denoted by Ei) on the intersection
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Figure 4: Control triangles. The small arrows show the normal vectors Ni
corresponding to the corner points Qi, R is a reference point.

line of planes πi and πi+1. Then the segments QiEi, EiQi+1,
QiQi+1 determine three lines in implicit form, denoted by l1,
l2 and l3, respectively. The curve ci goes smoothly from l1 to
l2, touching them at their intersection points with l3. This is a
planar implicit equation given in the form

ci(x, y) = (1 − λi)l1l2 − λil23 = 0. (11)

Here λi is the fullness factor, which also determines the type
of conic. For example, in Figure 4 Q2E2Q3 represents a control
triangle for curve c2. All conics can also be defined in rational
Bézier form ci(t), using the same three control points and a ra-
tional weight – a property we are going to exploit later, see the
tessellation algorithm in Section 6.4.

We consider three cases.
Case 1. Let us construct a quadratic primary ribbon Pi that

contains ci. It is a natural idea to use Liming’s technique for
three planes, then

Pi(x, y, z) = (1 − λi)πiπi+1 − λiπ̃
2
i = 0, (12)

where π̃i denotes the cutting plane. This must contain the chord
QiQi+1, but there is a degree of freedom, called the sweep di-
rection si, by means of which we actually determine this plane.
The normal of π̃i will always be the vector product of the chord
and si.

One special case is when si is chosen to be orthogonal to
the plane of the control triangle, and simple conical sweeps are
generated. If both Ni and Ni+1 are contained in the plane of the
control triangle, and the conic represents a circular arc, a cylin-
drical surface is obtained. In order to set a good sweep direction
for arbitrary tangent plane normals, we propose to set it orthog-
onal to the average of Ni and Ni+1; this method degenerates to
the above cylindrical surface. In these cases, a planar bounding
surface Bi is used, determined by the control triangle, thus ci

is reproduced. An example of a Liming-ribbon, which touches
the corners Q2 and Q3, can be seen in Figure 5.

Case 2. Another possible way of creating conic boundaries
is when the primary ribbon Pi is set as the plane of the con-
trol triangle, being incident to πi and πi+1. Then we define Bi

as a quadratic Liming surface using binormals Mi at the two
corners. This construction produces curved bounding surfaces.
Since Bi also contains the conic, the intersection with Pi will
reproduce ci, as required. Figure 6 shows a curved bounding
surface interpolating corners Q1 and Q2.

Figure 5: A ribbon surface on the Q2Q3 boundary.

Figure 6: A curved bounding surface on the Q1Q2 boundary.

Case 3. We may need to create conic boundaries by com-
bining the previous two cases. When the angle of the sweep
direction with the plane of the control triangle is less than a
given tolerance, we retain the general quadratic Liming-ribbon
Pi, and intersect it with a curved bounding surface Bi.

It is a necessary condition for the existence of a conic bound-
ary with Liming-ribbons that the opposite corner points fall
into the consistently oriented positive half spaces of the tan-
gential planes. Formally, πi(Qi+1) > 0 and πi+1(Qi) > 0 must
hold. This condition was also pointed out by Bajaj and Ihm
[30]. An example is shown in Figure 7; the top curve of an
“almost toroid” surface lies in the xy-plane, while the left nor-
mal vector N2 is tilted forward, and the right normal vector N1
is tilted backwards. Here the above criterion is not satisfied,
and no appropriate conic ribbon can be inserted, since the two
normals would point into different half-spaces, yielding a non-
sense shape. In these cases, we need to apply another advanced
construction, described in the next section.

Figure 7: An I-ribbon with twisted normal vectors.
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4.3. I-segments and I-ribbons

First we describe I-segments. These are the 2D counterparts
of I-patches, where two implicit curves are being blended. I-
segments, defined by quartic polynomials, are more general
curves than conics. Given two primitive lines li and two lo-
cal bounding lines hi in the plane of the control triangle, the
segment runs from one intersection point to the other (see ex-
amples in Figure 8). We use the following polynomial formula:

I(x, y) = w1l1h2
2 + w2l2h2

1 + w0h2
1h2

2 = 0. (13)

I-ribbons are based on the same logic, combining tangent planes
πi and πi+1 at two adjacent corners with local bounding planes
µi and µi+1. Then

Pi(x, y, z) = wi,1πiµ
2
i+1 + wi,2πi+1µ

2
i + wi,0µ

2
i µ

2
i+1 = 0. (14)

A natural choice for the local bounding surfaces is to use two
parallel planes perpendicular to the chord and interpolating the
corner points. Thus we have created an I-ribbon Pi; its corre-
sponding bounding surface Bi can either be a plane or a curved
bounding surface, as discussed for Liming-ribbons. In Figure 7
an I-ribbon is shown that resolves the difficult case with twisted
normals mentioned above.

4.4. General boundary curves

In addition to these special constructions, arbitrary primary
and bounding surfaces can also be used, producing general 3D
boundary curves.

4.5. Orienting ribbons and bounding surfaces

In contrast to functional splines, the orientation of the ribbons
is crucial for I-patches. These ribbons occur in separate terms
in the equation (not as a single product), and for each ribbon we
require that the local gradient must have the same direction as
that of the final patch.

Let us see some simple 2D examples in Figure 8. In 8a the
functional spline curve matches the orientation of the primaries.
In 8b we have an I-segment with inconsistent orientation, yield-
ing a wrong curve, however, 8c is consistent, and we obtain
a good result. In 8d the functional spline curve cannot prop-
erly match the given orientations, and a nonsense curve is ob-
tained. Fig. 8e shows an incorrectly oriented I-segment, but
in 8f the expected result is obtained. It can be seen that the
functional spline has problems with creating inflections, while
the I-segment can solve these if the primary orientation is con-
sistent.

It is a basic assumption that we wish to keep the I-patch
within the union of the positive half-spaces of the bounding
surfaces, i.e., we envision the shape on the same side of the
Bi-s. (We need to check whether this condition is satisfied, and
modify some of the boundary surfaces, when needed, see Sec-
tion 6.1.) We also assume that a consistently oriented, piece-
wise normal vector fence exists for the boundary loop, as shown
in Figure 9. Matching this will define the correct orientation
(sign) of the primary surfaces.

4.6. Setting the shape parameters

If we construct Liming-ribbons, we may assign a fullness
value λi for each boundary; circular arcs are often chosen, to
connect to cylinders. In principle, the sweep direction of these
ribbons may also be a parameter to be tweaked.

Once the primaries or the primary ribbons are defined, we
need to set the wi weights. We are not aware of any single
best method to do so, however, we apply a heuristic setting that
yields good default values in the majority of cases. All wi must
be positive, since the orientation of primaries – as set in the
previous subsection – must be retained. Let us pick a refer-
ence point R that is typically, but not necessarily, a point to be
interpolated by the I-patch. We set the weighting of the com-
ponents by satisfying wiPi(R)/B2

i (R) = ±1, using the algebraic
distances from Section 3.3. The sign depends on the location
of the reference point with respect to the ribbon. For example,
in Figure 4, the reference point is under the Q1Q2 ribbon, but
above the Q2Q3 ribbon. Thus we combine the surfaces in a way
that they will have the same contribution at the reference point.

Keeping the above initial wi values, we have freedom to
choose an arbitrary w0 weight in Eq. (1), that will globally con-
trol the fullness of the patch. The geometric meaning is that
this value corresponds to the sum of the distances, so accord-
ingly tighter or looser patch interiors can be produced. We set
the coefficients such that in R the sum of the absolute values of
all weighted algebraic ribbons is one; however, their sign de-
pends on the sign of the Pi-s. We want the patch to interpolate
R, so w0 needs to be set to

∑
sgn(Pi(R)), which ensures that the

patch interpolates R.
Of course, it may make sense to modify the default weights

wi. In our experience, these are appropriate for simple mod-
els, but for complex, twisted configurations some tuning may
be necessary. It is possible to manually edit the weights, but
this requires experience. Instead we propose to run a numerical
optimization: first we create an initial triangulated mesh (as de-
scribed in Section 6.4) using the defaults, then these values are
updated by minimizing the polyhedral energy functional pro-
posed in [34]. Generally a good shape is obtained.

5. Surface modeling with I-patches

In this section we show two application areas where I-patches
are useful. The first is setback vertex blending, where a multi-
sided I-patch is formed to connect primary surfaces and edge
blends. The second application is polyhedral design, where a
complex free-form shape is defined by means of a control poly-
hedron, yielding a collection of smoothly connected I-patches.
The common boundaries and the ribbons are naturally derived.

5.1. Setback vertex blending

Vertex blends play an important role in surface and solid
modeling. While edge blends (fillets) replace sharp intersec-
tion curves, vertex blends smoothly connect converging edge
blends. Vertex blending is a difficult modeling task, as the edges
to be blended may represent very complex configurations; we
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(a) Functional spline (b) I-segment with wrong orientation (c) I-segment with good orientation

(d) Functional spline (e) I-segment with wrong orientation (f) I-segment with good orientation

Figure 8: 2D curves with functional splines and I-segments.

Figure 9: Patch with a consistent normal fence; all primaries must have the
same (e.g. positive) half-space in the direction of the fence.

may have convex, concave or smooth edges with uneven an-
gles and radii, and must handle many special cases, including
tangential, cuspate and degenerate edge pairs.

A general solution to this problem is setback vertex blending,
see the early papers by Braid [35] and Várady et al. [36, 37].
The termination of the edge blends are pushed away from the
vertex by various setback values to ensure the necessary space
for a smooth transition. Later further multi-sided setback vertex
blends were published using variants of functional splines [19]
and S-patches [38]. It has been emphasized in [37] that for
connecting n edge blends the most genuine surface model is not
an n-sided, but a 2n-sided patch, although it is possible that the
setback vertex blends degenerate, having an arbitrary number
of sides between n and 2n.

The basic components of a setback vertex blend are shown in

Figure 10: Construction of a setback vertex blend.

Figure 10. Here we describe vertex blends for polyhedra, but
the concept nicely generalizes for more complex ribbons and
bounding surfaces. The i-th edge blend, generally a cylinder, is
bounded by two rail curves (colored pink), that run on the “pre-
vious” and “next” primary surfaces. The edge blends terminate
at profile curves (blue); for example, one connects two corner
points C1 and C2. Together with the edge point E12, a planar
control triangle is formed, a placeholder for a circular (or conic)
profile.

On each primary surface there are two corners that need to be
connected by a spring curve (blue); for example, the one that
connects C2 and C3. The rail curves that pass through these
points intersect at point I23, defining another triangle for a conic
segment. Altogether, the vertex blend is bounded by an alternat-
ing sequence of profile curves and spring curves. A formula to
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compute the extent of the setbacks can be found in Appendix A;
for more details see [37].

The actual construction is fairly straightforward: first an al-
ternating sequence of cylindrical edge blends and planar pri-
mary surfaces are computed, then these are intersected by an
alternating sequence of bounding planes and curved bounding
surfaces. We define a reference point by adding to the central
vertex O a displacement vector based on the average deviation
between the edgepoints Ei j and the midpoints of the related cir-
cular profiles. Then we set the weights wi and the fullness of the
patch, and apply the I-patch equation. We will discuss potential
ribbon problems and show interesting examples in Section 6.

5.2. Polyhedral design

Modeling with control polyhedra has many manifestations.
The most well-known is recursive subdivision (see e.g. [39]),
but quadrilateral parametric surfaces can also be stitched to-
gether in various ways (see e.g. [40]). In most of these ap-
proaches, handling irregular vertices is still a crucial research
issue. Quadratic and cubic S-patches can also be used for poly-
hedral design [41], but the topological structures in these con-
structions are somewhat limited.

Here we propose a polyhedron-based representation that pro-
duces smoothly connected I-patches. The control polyhedron
has a general topology with faces of arbitrary number of sides
and vertices of arbitrary valency. The faces are not necessar-
ily planar, and the control structure may be open or closed, but
T-nodes are not permitted.

The surface model is determined by a free-form curve net-
work of conic arcs. Its topological structure corresponds to
the dual graph of the polyhedron, see Figure 11. For each
face of the polyhedron we compute a centroid, Qi. For each
straight segment of the polyhedron there is a corresponding
crossing curved edge that connects the centroids of the neigh-
boring faces. For each vertex of the polyhedron with valency
k we compute a k-sided surface patch, bounded by a loop of k
curved edges.

At the centroid we determine a local tangent plane; for pla-
nar control faces this is obvious, for non-planar faces we com-
pute a best-fit plane that contains the centroid and approxi-
mates the midpoints of the edges in least-squares sense. The
Liming-ribbons (or the I-ribbons) are uniquely defined by two
centroids and two local tangent planes, being shared by the ad-
jacent patches along the common boundary.

A simple example is shown in Figure 11. The control poly-
hedron has one 5-sided and six 4-sided faces. It has internally
two 3-valent vertices and one 5-valent vertex, which will yield
two 3-sided patches and one 5-sided patch. The Q2Q3 ribbon,
for example, is then uniquely defined for both the left 3-sided
and the 5-sided patch, ensuring smooth connection.

6. Discussion

We would like to emphasize that modeling with implicit sur-
faces is a difficult area. We have discussed the mathematical
background of I-patches; however, we have to keep in mind
that these schemes will produce good shapes only if the ribbons

Figure 11: Control cage for polyhedral design.

Figure 12: The generated curve network and surfaces.

and the bounding surfaces are “suitable” for patch generation.
Certain problems can be detected, and the components can be
fixed, as explained below. In the second half of this Section we
will compare I-patches with alternative schemes, then show a
few test examples, and discuss our tessellation algorithm.

6.1. Handling ribbon problems

In Section 4.3 we have already discussed special cases, where
it was impossible to create a Liming-ribbon, and we had to ap-
ply a more complex construction, the I-ribbon. Here we deal
with two further problems.

6.1.1. Poor ribbons
The I-patch scheme may produce dubious shapes, if the dis-

tance fields produced by the primary ribbons abruptly change
their sign within the space where the I-patch is going to be
created. This may be due to multiple surface branches in the
vicinity of the boundaries, or high curvatures, when the ribbon
“turns under” itself; see the transparent surfaces in Figures 13
and 14. Self-intersections within the ribbon may also lead to
visible shape problems.

In these cases we have different options to repair the ribbons.
We can change the fullness λi of the boundary conics, which
strongly affects the shape of the Liming-ribbons, as well. As
the curvature becomes smaller, the artifacts disappear. Such an
example can be seen in Figure 13, where the original ribbon of
the I-patch was replaced by a “broader” one that locally pre-
vents interference with the interior of the patch.

Another option is to change the representation of the primary
ribbon, and exclude the highly curved portion or the undesired
branch. We can modify Liming’s method to obtain a piecewise



Preprint / Computers & Graphics (2020) 9

Figure 13: Fixing a shape artifact by tuning the fullness of the ribbons.

Liming-ribbon:

Pi(x, y, z) =

 (1 − λ)πiπi+1 − λπ̃
2
i

πiπi+1

π̃i ≥ 0,
π̃i < 0.

(15)

An example is shown in Figure 14, where a cylinder with small
radius was replaced by a piecewise ribbon, yielding a good set-
back vertex blend. The drawback of this method is that hav-
ing G1 continuity along π̃i may affect internal continuity within
the patch, although in many cases the curvature maps or the
isophote lines do not indicate this phenomenon at all, see for
example Figure 15.

6.1.2. Intersecting bounding surfaces
We assume that the union of the bounding surfaces forms

a well-defined, connected space for the patch to be created,
and accordingly all bounding surfaces are supposed to have
a constant sign inside the patch. This is violated when a
bounding surface B j intersects another boundary curve, where
Pi = Bi = 0, and thus I-patches of unacceptable quality are
obtained. We can detect this problem by checking whether the
bounding surface intersects the boundary loop on the distant
boundaries. An example is shown in Figure 16, where the top
right bounding surface intersects the bottom left boundary. The
problem is fixed, if we use a curved bounding surface.

6.2. Comparisons with other schemes

In the following we will show some comparisons with func-
tional splines [7, 19] and algebraic Hermite interpolation [17].

Figure 14: Fixing a shape artifact by using piecewise ribbons.

Figure 15: Isophote lines on an 8-sided I-patch with piecewise ribbons.

6.2.1. Functional splines
Functional splines [7] are defined by the equation

F(x, y, z) = (1 − λ) f − λgk+1 = 0, (16)

a generalization of Liming’s formula, cf. Equation (11). Here f
is the base surface, and g is the transversal surface. The result-
ing isosurface interpolates the intersection of f and g, joining to
the former with Gk continuity. While in special cases it can be
simplified, generally this means that f =

∏
i Pi and g =

∏
i Bi.

It has been known [42] that a large class of low-degree func-
tional splines are convex, and thus cannot be used for specific
boundary configurations. Take for example the 6-sided hole
loop with alternating convex and concave boundary constraints
in Figure 17. In [7], this model was generated as a collection
of six smoothly connected functional splines. As discussed in
Section 4.5, with I-patches we can set the sign of each primary
so that a consistent normal orientation can be achieved.
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Figure 16: Fixing a shape artifact by using a curved bounding surface.

Figure 17: A six-sided hole loop with alternating convexity of curves.

A variation of the above definition is the symmetric func-
tional spline [19]

F(x, y, z) = (1 − λ) fagk+1
b − λ fbgk+1

a = 0, (17)

which – similarly to I-patches – combines the primary and
bounding surfaces. This modified formula allows the creation
of non-convex surfaces, such as house corner blends, but some
ingenuity is required in choosing the correct base and transver-
sal surfaces (see its application for vertex blends in [19]). In
contrast, I-patches, having separate components, have more po-
tential to be tuned as they have more degrees of freedom. This
is illustrated in Figure 18, where isophote lines are compared.

6.2.2. Algebraic Hermite interpolation
The fitting framework described in [17] gives a direct solu-

tion for the hole-filling problem, leading to a homogeneous sys-
tem of linear equations. The algorithm ensures finding the sur-

Figure 18: Isophote lines on a six-sided patch, with symmetric functional spline
(top) and I-patch (bottom).

face of least degree satisfying the boundary constraints. Find-
ing an acceptable solution, however, is not trivial, as we will
demonstrate in the following example.

Take the setback vertex blend configuration shown in Fig-
ure 19a. The profile curves are circular arcs, while the spring
curves are parabolas. The normal vectors at the vertices are
defined by the end tangent vectors of the adjacent curves; the
normal fence along the curves is a linear blend between the end
normals, as in [30].

The least degree for which the system is solvable is four, but
the (unique) quartic patch contains several singularities (nor-
mal flips) on its boundary. Going one degree higher, we find
the nice surface shown in Figure 19b. The problem is that this
is but one of the infinitely many solutions, as the kernel is 6-
dimensional, and any linear combination of its basis vectors
corresponds to a valid solution. Most of these, however, con-
tain self-intersections or have large bumps in the interior. Fig-
ure 19c, for example, shows another quintic surface that nicely
interpolates the boundary constraints, but has a gaping hole in-
side. (Here the full isosurface is shown to appreciate its form;
black lines show the setback vertex blend boundaries.)

6.3. Test cases

1. We have shown a 6-sided vertex blend earlier in Figure 10.
This connected three cylindrical edge blends with radii 20,
50 and 10 and setbacks 100, 60 and 125. These parameters
can easily be edited.

2. An interesting 10-sided patch is shown in Figure 20, con-
necting three cylinders of almost 90 degree arcs with two
very flat cylinders. The I-patch is sliced with parallel
planes, and the curvature map is also shown. Piecewise
Liming-ribbons were used.

3. The next test case is a combination of connected setback
vertex blends, applied on a polyhedron. In Figure 21, three
8-sided and three 6-sided patches smoothly connect to pla-
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(a) I-patch with mean curvature (b) Hermite fit with mean curvature (c) Another Hermite fit (full isosurface)

Figure 19: Setback vertex blend with uneven radii.

Figure 20: A ten-sided patch with contours and mean curvature.

(a) Curvature map (b) Contours

Figure 21: Connected vertex blends.

nar faces (not shown). The patches are displayed with cur-
vature map and contours.

4. We have shown earlier a collection of three smoothly con-
nected I-patches defined by a control polyhedron, see Fig-
ure 12.

5. Finally, we mimic polyhedral design using a very simple
test object (Figure 22). We performed simple operations,
such as dragging the right face and repositioning the top
vertices, the shape was modified in a natural manner. On
the left side, we extruded the left face and created a new
knob-like shape.

6.4. Tessellation
I-Patches with parametrizable boundary curves can be tessel-

lated in the following way. First create an auxiliary multi-sided
parametric patch (in this paper the C0 multi-sided Coons patch
is used, see Appendix B) with the same boundary curves as the
I-patch. Then compute normal vectors at the corner points from
the end tangents of the boundaries. After tessellating the auxil-
iary patch, at each mesh vertex define a ray by taking a convex
combination of the corner normals using generalized barycen-
tric coordinates [43]. Along the boundaries this will be a linear

(a) Control net (b) Control net

(c) Shaded surface (d) Shaded surface

(e) Contours (f) Contours

Figure 22: Polyhedral design examples.

Figure 23: Tessellation by rays emanating from a parametric surface.
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sweep between the corner normals; it is assumed that in the
interior the rays remain within the union of the positive half-
spaces of the bounding surfaces. The rays intersect the I-patch
and produce a tessellation (see Figure 23); the angles between
the rays and the gradients of the surface should remain under a
prescribed threshold. When this is violated, the I-patch is cat-
egorized as “poor”, possibly having abrupt curvature changes,
internal holes or branching. In this case the I-patch needs to
be repaired (see Section 6.1). Experience shows that this algo-
rithm produces a nice mesh for valid I-patches and is suitable
to recognize ill-conditioned cases.

Conclusion

In this paper we revisited classical surfacing techniques us-
ing implicit patches, and attempted to widen the limits of for-
mer representations. We believe that the use of implicit multi-
sided patches is justified when we want to accurately connect to
other, mainly regular, implicit surfaces, and/or want to exploit
the well-known benefits of algebraic representations. I-patches
represent an interesting approach, where the primary surfaces
can be individually controlled by weighted bounding surfaces.
We have discussed the basic construction with useful geometric
observations, including a distance-based interpretation, consis-
tent orientation of the primaries, and curved bounding surfaces.
In our I-patch applications of setback vertex blending and poly-
hedral design, mainly Liming-ribbons with conic boundaries
were combined; however, various cases with more general sur-
face components have also been studied.

Concerning future work, there are interesting issues to en-
hance the current scheme, including the generation of the most
suitable bounding surfaces and the automatic calculation of the
ribbon weights that could replace the current heuristic method.
The GPU implementation of I-patches is also an important com-
putational topic.
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Appendix A. Computing setbacks

It is crucial to set appropriate setbacks, as they define the dis-
tances of the profile planes from the vertex. This is explained
using Figure 10. Roughly speaking, the formula below takes
into consideration the previous and the next rail curve con-
straints, denoted by rangeprev and rangenext, and adds a setback
offset to ensure sufficient turning space for the spring curves:

setback = max(rangeprev, rangenext, 0) + offset. (A.1)

Take, for example, the setback that belongs to the profile curve
running from C1 to C2. Here rangeprev = |AO|, rangenext =

|BO|, and setback12 = |E12O|. Note that the maximum function
must always yield a positive value, as we need to avoid negative
ranges that occur at concave edge blends.

Appendix B. Multi-sided C0 Coons patch

The C0 Coons patch is a classic surface scheme that interpo-
lates four boundary curves. It can be generalized to any number
of sides in the following way [44]:

1. For each side i, a Coons ribbon Ri is defined as a C0 Coons
patch based on three consecutive boundaries {i − 1, i, i +

1}. The fourth curve is created as a cubic Bézier curve
interpolating the position and first derivative at the start-
and endpoint of the (i + 2)nd and (i − 2)nd boundaries,
respectively.

2. The domain of the n-sided patch is a regular n-sided poly-
gon Ωn. For any domain point, generalized barycentric
coordinates {λ j} can be computed. Then local parameters
are assigned to each side:

di = 1 − λi−1 − λi, si = λi/(λi−1 + λi). (B.1)

3. Finally, the patch is defined to be

S (p) =

n∑
i=1

Ri(si, di)
1 − di

2
, (B.2)

where (si, di) are the local parameters of the point p ∈ Ωn.

For further details refer to the original paper.
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