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Transfinite Interpolation

▶ Interpolate infinitely many points

▶ First use – Gordon & Hall (1973) ?

▶ General treatment of C 0 case in Sabin (1996)

Mapping M between

B(t) : R → R3 parametric 3D boundary

S(u, v) : R2 → R3 parametric surface

s.t. ∀t ∃(u, v) : B(t) = S(u, v) [similarly for multiple loops]

S(u, v) =

∫
t
B(t) · Φ(t, u, v)dt ‘elliptic’

S(u, v) =
n∑

i=1

B(ti (u, v)) ·Ψi (u, v) ‘hyperbolic’

▶ Extension to C 1 in Sabin (1998)
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Integral-based (‘elliptic’) patches
Biharmonic (elliptic) PDE (e.g. Bloor & Wilson, 1989)(

∂2

∂u2
+

∂2

∂v2

)2

S(u, v) = 0 (subject to boundary constraints)

Jacobson et al. (2010)

Vaitkus (2023)



Integral-based (‘elliptic’) patches
Gordon & Wixom (1974)

S(p) =
1

2π

∫ 2π

0
Cθ

(
∥p− q1∥
∥q2 − q1∥

)
dθ

Extension to non-convex domains
by Belyaev & Floater (2015)
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Integral-based (‘elliptic’) patches
Transfinite mean value interpolation (Dyken & Floater, 2009)

S(p) =

∫ 2π

0

S(q)

∥p− q∥
dθ

/∫ 2π

0

1

∥p− q∥
dθ

▶ Also for C 1

▶ Non-convex and multiply connected domains
▶ Explicit equations for special cases

Pointwise radial minimization (Floater & Schulz, 2008)
▶ Hermite curves connecting p and q
▶ Find linear polynomial at p minimizing bending energy integral
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Side-based (‘hyperbolic’) patches
Sabin (1998)

▶ Side-based version of ‘pointwise radial minimization’
▶ Unknown: 3D point + Jacobian
▶ Minimize the elastic bend energy

▶ Interpolant-based surfaces ≈ ‘hyperbolic’



Ribbon-based surfaces



Ribbons

▶ Biparametric surface representing boundary constraints
▶ Derived from a curve network (e.g. Chiyokura, 1986)
▶ Geometric constraints (e.g. normal/curvature tensor field)
▶ Control point grid
▶ etc.

▶ Compatibility at the corners
▶ Explicitly enforced
▶ Rational blending – Gregory twist (Gregory, 1974)

T(u, v) =
v

u + v
· ∂2

∂u∂v
Ri−1(u, v) +

u

u + v
· ∂2

∂u∂v
Ri (u, v)
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Domains



Domains – Convex/Concave



Domains – Polygonal/Curved



Local parameterizations



Parameterization constructions

GBC-based:

di = 1− λi−1 − λi , si = λi/(λi−1 + λi )



Parameterization types

Side-based

Corner-based

Derivative constraints

di-1 s i=

Γi

Γi
+
1Γ

i-1

(u,v)di+1



Examples
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Singular side blend
▶ Inverse distance weights (Shepard, 1968)
▶ Parametric distances (di )
▶ G e−1 interpolation

W ∗
i =

1/de
i∑n

j=1 1/d
e
j

Patch equation (Barnhill, 1977; Gregory, 1986; Kato, 2000 etc.):

S(u, v) =
n∑

i=1

SInt
i (si , di ) ·W ∗

i (d1, . . . , dn)



Singular side blend – Interior/boundary control

Várady et al. (2012)

Martin & Reif (2022)



Singular side blend – Polyhedral modeling

‘SuperD’ patch

Rockwood & Gao (2018)



Non-singular side blend

Wi = Wi−1,i +Wi ,i+1, where Wi−1,i =
1/(d2

i−1di )
2∑n

j=1 1/(dj−1dj)2

Patch equation (Salvi et al., 2014):

S(u, v) =
1

2

n∑
i=1

SInt
i (si , di ) ·Wi (d1, . . . , dn)



Corner blend

Wi−1,i =
1/(d2

i−1di )
2∑n

j=1 1/(dj−1dj)2

Patch equation (Gregory, 1986):

S(u, v) =
n∑

i=1

SInt
i−1,i (si−1, si ) ·Wi−1,i (d1, . . . , dn)



Corner blend – Extensions

G 2 continuity

Salvi et al. (2014)

Midpoint control

Salvi et al. (2016)



Boolean sum patch
Generalized Coons patch (Várady et al., 2011; Salvi et al., 2014)
(Classic Coons formula: S = S13 ⊕ S24 = S13 + S24 − S1234)

S(u, v) =
n∑

i=1

SInt
i (si , di ) ·Wi (d1, . . . , dn)

−
n∑

i=1

SCorr
i−1,i (si−1, si ) ·Wi−1,i (d1, . . . , dn)

(needs constrained parameters)
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Control point configurations

interconnected corner-based side-based

Examples of interconnected configurations:

rectangular web triangular web Minkowski sum lattice polygon
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Rectangular spiderweb

▶ Sabin (1983)
▶ n = 3, 5
▶ Quadratic

▶ Hosaka & Kimura (1984)
▶ n = 3, 5, 6
▶ Quadratic or cubic

▶ Zheng & Ball (1997)
▶ n = 3, 5, 6 (and, in theory, others)
▶ Any degree

▶ S(u) =
∑

i CiBi (u)
▶ i = (i1, . . . , in) index vector

(distances from each boundary)
▶ u = (u1, . . . , un) parameters
▶ Bi (u) blending function (quite complex)

▶ Note: S : Rn ⊃ Ω → R3

▶ Ω is a constrained 2-dimensional subset of Rn
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Triangular spiderweb

▶ M-patches (Karčiauskas, 1999, 2003)

▶ Based on GBCs λ1, . . . , λn

▶ S(u, v) =
∑

In,d C(i ;j ,k)B
d
(i ;j ,k)(u, v)

▶ In,d = {(i ; j , k)} index set
▶ 1 ≤ i ≤ n
▶ j , k ≥ 0
▶ j + k ≤ d

▶ Bd
(i ;j,k)(u, v) =

(
d
j

)
λd−j−k
i−1 λj

i

(∏n
ℓ=1 λℓ

)k
(can be more general)

▶ Not a partition of unity → needs normalization

▶ Regular/convex polygonal domain



Minkowski sum

▶ S-patch (Loop & DeRose, 1989)

▶ Generalization of the Bézier curve/triangle

▶ Based on GBCs λ1, . . . , λn

▶ S(u, v) =
∑

s∈Ln,d CsB
d
s (u, v)

▶ Ln,d = {s = (s1, . . . , sn)} index set
▶ ∀i : si ≥ 0
▶

∑n
i=1 si = d

▶ Bd
s (u, v) =

d!∏n
i=1 si !

·
∏n

i=1 λ
si
i

▶ Also on concave domains (Schaefer, 2017)



Lattice polygon

▶ Toric Bézier patch (Krasauskas, 2002)

▶ Inspired by toric varieties (algebraic geometry)

▶ Domain D = lattice polygon
▶ S(u, v) =

∑
(j ,k)∈D∩Z2 C(j ,k)B

d
(j ,k)(u, v)

▶ Bd
(j,k)(u, v) = c(j,k) ·

∏n
i=1 hi (u, v)

hi (j,k)

▶ c(j,k) (almost) free coefficients
▶ hi (u, v) perpendicular distance from side i

(scaled s.t. gives integers at lattice points)
▶ Not a partition of unity → needs normalization

▶ G 1/G 2 interpolation (Sun & Zhu, 2015, 2018)

▶ Degree elevation (Li et al., 2021)

▶ Not all configurations are admissible

▶ May be asymmetric

▶ Only convex domains



Corner-based constructions

Overlap patches (Várady, 1991; Salvi, 2022)

▶ Sum of quarter-Bézier patches

▶ + central control point

▶ For an odd degree d :

S(u, v) =
n∑

i=1

⌊d/2⌋∑
j=0

⌊d/2⌋∑
k=0

Ci
j ,kB

d
j (hi )B

d
k (h

∗
i−1) + C0B0(u, v)

▶ Ci
j ,k : control point (j , k) in corner i

▶ Bd
k (h): the k-th Bernstein polynomial of degree d

▶ C0: central control point

▶ B0(u, v): weight deficiency

▶ Needs a constrained parameterization



Corner-based constructions

Qin et al. (2023)

Blending Bézier patches (Qin et al., 2023)

▶ Corner ribbons from rectangular spiderweb

▶ Variant of the Charrot–Gregory scheme

▶ G 2 interpolation

▶ Needs a constrained parameterization



Side-based constructions
Generalized Bézier patches (Várady et al., 2016)

▶ Sum of half-Bézier patches + central control point

Várady et al. (2017)

S(u, v) =
n∑

i=1

d∑
j=0

⌊ d−1
2

⌋∑
k=0

· Ci
j ,kµi ,j ,k(u, v)B

d ,i
j ,k (u, v) + C0 · B0(u, v)︸ ︷︷ ︸

1−
∑

µB

Bd ,i
j ,k (u, v) := Bd

j (si (u, v)) · Bd
k (di (u, v))



Curved, multiply connected domains

Várady et al. (2020)



Generalized B-spline patches

Vaitkus et al. (2021)
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Interior control structure for Generalized Bézier patches

Problem

A single central control point may not be enough
in complex configurations.



Distance parameters



Parametric medial axis



MAT-based quad structure



Depth-2 template



Depth-3 template



Depth-4 template



Depth-5 template



Degree synchronization



Distributing weight deficiency proportionally

= + +
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Conclusion & future work

Surface type Pros Cons

Integral-based Very general Hard to evaluate
Interpolant-based Arbitrary ribbons No interior control
Control-net-based Interior control Polynomial boundaries

⇒ Generalized B-spline with interior control?
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