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Abstract
The class of curves whose curvature is a trigonometric function of the arc length has appeared multiple times in
the last century, in different contexts. It was first studied by Eduard Lehr, in a relatively obscure work. Due to
renewed interest in it within the field of aesthetic curves,7 we summarize its most important results in this paper.

1. Introduction

Aesthetic plane curves are often defined by their Cesàro
equation, i.e., the curvature as a function of arc length. A
well-known example is the class of log-aesthetic curves,5 but
a few other types are also briefly explored in Alfred Gray’s
textbook (Sections 5.3–5.4),1 including one where

κ(s) = csins, (1)

with c being an arbitrary constant. This is quoted in Stephen
Wolfram’s A New Kind of Science (p. 418, example (j) in
the figure),8 and the corresponding note on p. 1009 adds that
the case of κ(s) = asin(bs) ‘was studied by Eduard Lehr in
1932’. Lehr’s dissertation3 was already in Gray’s bibliogra-
phy, although no explicit reference was made there.

The curve in question, in slightly different form, has been
used in geophysics to model river meandering since the
1960s,4 as it closely resembles the naturally occuring shape
of elastica. There it is called a sine-generated curve, and it
is defined by its tangent angle:

θ(s) = ωsin
2πs
L

. (2)

Here ω is the maximum turning angle and L is the total
length. Deriving this we arrive at the Cesàro equation

κ(s) =
2πω

L
cos

2πs
L

. (3)

Recently, the simplified formulation

κ(s) = cos
s
c

(4)

was proposed as an intrinsically fair curve representation, by
the name trig-aesthetic curve (see Fig. 1).7

It appears that the first study of this class of curves was
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Figure 1: Trig-aesthetic curves (Eq. 4) for various c values.
The s = 0 points are always placed on the dotted line.

carried out by Lehr, but his work is in German, and it is
available only in a handful of libraries. This paper aims to
summarize his most important results.

2. Who was Eduard Lehr?

Eduard Lehr was born in 25 July 1906, in Ingolstadt, to
Franz Xavier Lehr, a senior teacher and headmaster in Mu-
nich. He studied to be a teacher and passed the examinations
in 1929–30, while also working as an assistant for descrip-
tive geometry at the Technical University of Munich (then
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Figure 2: Excerpt from the military records on Eduard Lehr.

still called Technische Hochschule München). He wrote his
dissertation there in 1932, first under the “father of glacier
photogrammetry”, Sebastian Finsterwalder, then—after his
advisor’s retirement—under Josef Lense (known from the
Lense–Thirring effect).†

He started his military training in 1936, and did mili-
tary service during the Second World War with various anti-
aircraft artillery batallions in Nuremberg, Darmstadt and
other places, eventually rising to the rank of first lieutenant
of the reserve. According to the assessments in his military
records (see Fig. 2), he was a slender man of small build,
quiet and earnest, somewhat shy, but possessed a strong will.
He lacked leadership skills, however, and in 1941, upon be-
ing appointed commander of a coastal battery, he suffered a
nervous breakdown and requested a transfer to the weather
service.

In 1942 he married Barbara Horras, the daughter of a lo-
comotive driver, but she died pregnant in an air raid in 1945,
leaving Lehr a childless widower. After the war, he was
briefly suspended from teaching due to his membership in
the Nazi Party and other pro-nazi organizations. Classified
as a minor offender, he was reinstated in 1947; he taught
mathematics and physics in Traunstein and later in Munich.
His last workplace was the Max-Planck-Gymnasium, where
he also acted as director from 1952 until his untimely death
in 1955 (see Fig. 3).

Apart from his dissertation, only one other scientific work
is attributed to him, although we have not been able to lo-
cate it: “Über die Dreiecksteilung von Vieleckern durch Eck-
transversalen” (On the triangulation of polygons using ver-
tex transversals).

3. Lehr’s curves

The dissertation of Eduard Lehr bears the title ‘On curves
whose curvature is a periodic function of arc length’ (Fig. 4).

† https://mathgenealogy.org/id.php?id=65765

Figure 3: A photo of Eduard Lehr from his obituary at the
Max-Planck-Gymnasium München.

It is dedicated to the analysis of the curve family defined by
the intrinsic equation

κ =
1
ρ
= a+bcos(cs). (5)

Note the presence of the additional term a, which—as we
will see below—adds many different shapes to those in
Equations (1) or (4). In the following, we will distinguish
the shape parameter of trig-aesthetic curves (Eq. 4) with a
hat (ĉ) to differentiate it from the c parameter in Eq. (5).

In the rest of this section, we will go through the main re-
sults of Lehr’s work, following largely its original structure.

3.1. General properties

We can assume without loss of generality that a ≥ 0, b > 0
and c > 0 (the b = 0 and c = 0 cases are just circles). Due to
the symmetric shape of the cosine function, it is enough to
examine a half period of the curve, starting from s0 = 0 and
ending in s1 = π

c . All symbols with indices 0 and 1 relate to
these endpoints, e.g. θ0 is the starting tangent angle.‡ The
points themselves are denoted by P0 and P1. Symbols with a
bar (e.g. s̄) are associated with the inflection point.

Since ρ ̸= 0 there are no cusps, and the curvature extrema
are in the endpoints. We only have an inflection when a ≤ b
(which is actually just a flat point when a = b). The end-
points are the only vertices (i.e., points where dκ/ds = 0).

‡ Notations are as in Lehr’s work, except for θ and φ, which have
their roles reversed. Additionally, curvature (κ) is often used, while
only the radius of curvature (ρ) is seen in the original.

https://mathgenealogy.org/id.php?id=65765
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Figure 4: The cover page of Eduard Lehr’s dissertation.

The shape is defined by the ratio a : b : c, so we have only
2 degrees of freedom if we do not care about the scaling.
A simple convention is to fix κ0 = a + b = 1. To exclude
rotations we will also assume θ0 = 0, so

θ = as+
b
d

sin(cs) ⇒ θ1 =
aπ

c
. (6)

Consequently, when a
c is an integer, the tangents at the

endpoints are parallel. If in addition P1 is on the normal line
of P0 the curve is closed. When a

c is not an integer, the whole
periodic curve remains inside a circle around M, where M is
the intersection of the normals at the endpoints. It becomes
a closed curve only when

θ1 = mπ+
ν

n
π, (7)

where m, n and ν are integers, ν and n are relative prime,
and ν < n. In this case, the curve will make n periods and ν

full turns until it closes in itself, making m extra loops at the
vertices. (See also Section 3.5 and Appendix A.)

We also define the excess angle as

φ = θ̄−θ1 =
1
c

(√
b2 −a2 −aarccos

a
b

)
. (8)

Note that φ is imaginary for a > b. Lehr regards the φ = 0
(i.e., a = b), θ1 > 0 case as the base form; other notable
forms are (i) the intermediary forms, when θ1 > 0 and 0 <
|φ| < ∞ (i.e., 0 ̸= a ̸= b ̸= 0), and (ii) that which are now

called trig-aesthetic curves (cf. Eq. 4), when a = 0. All other
cases are either circles or straight lines.

3.2. Related curves

Here we examine some derived curve expressions.

3.2.1. Evolute

Following Cesàro2 (Section II, Eq. 13), Lehr defines a series
of radii of curvature as§

ρ(0) = ρ, ρ(k) = ρ
d
ds

ρ(k−1). (9)

Then the arc length of the evolute is s′ = ρ, its radius of
curvature is ρ

′ = ρ(1); the tangent angle is the same as of
the original curve, i.e., θ

′ = θ. Consequently, the evolute has
cusps at the endpoints.

The differential equation form of our curves is

ρ
2
(1) = c2

ρ
4(b2

ρ
2 − (1−aρ)2), (10)

from which the intrinsic equation of the evolute is

ρ
′2 = c2s′4(b2s′2 − (1−as′)2). (11)

3.2.2. Offset

The curve at distance p has arc length S = s+ pθ, radius of
curvature R = ρ+ p, and tangent angle Θ = θ. Since ρ =−p
implies a zero radius of curvature, there will be a cusp there,
except when it coincides with the endpoint.

We can express our curve based on its offset:

S =
p
c

√
b2 −

(
1

R− p
−a
)2

+
1+ap

c
arccos

1
R−p −a

b
,

(12)
which becomes purely algebraic in the case of p =− 1

a :

(aR+1)2(a2c2S2 −b2)+a4R2 = 0. (13)

The intrinsic equation of the offset (from Eq. 10) is

P2 = c2(R− p)4(b2(R− p)2 − (1+ap−aR)2). (14)

The meaning of P is not discussed, but it is evidently

P = ρ(1) = R · dR
dS

. (15)

3.2.3. Involute

The involute has radius of curvature R′ = s + p′, and the
derivative of its arc length (w.r.t. the arc length of the orig-
inal curve) is dS′/ds = R′

κ. Here p′ is the initial length of
‘unwrapped string’. Although there is always a point where
R′ = 0, there are no cusps, vertices or inflections.

§ Here we also deviate slightly from Lehr’s notation, who uses
ρ′,ρ′′,ρ′′′, . . . for the series of radii of curvature.
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(a) Two pages with planar curves (b) A page with spherical curves

Figure 5: Curves drawn by Eduard Lehr.

Setting the starting parameter at the common point, the
intrinsic equation for the involute is

2cS′ = ac2R′2 +2b(cR′ sin(c(R′− p′))+

cos(c(R′− p′))− cos(cp′)). (16)

3.3. Invariants

In his seminal work on intrinsic equations (Section IV/8),
Cesàro2 defines the invariant of a curve family as a function
of the first k radii of curvature that is constant zero. In the
general case, the invariant for our curves is

ρ
3(ρ(1)ρ(4)−ρ(2)ρ(3))−12ρ

2
ρ

2
(1)ρ(3)+

60ρ
3
(1)(ρρ(2)−ρ

2
(1)). (17)

When a = b we get a simpler expression:

ρ
2
ρ(3)−8ρρ(1)ρ(2)+10ρ

3
(1), (18)

and also for the a = 0 case:

ρ
2
ρ(3)−9ρρ(1)ρ(2)+12ρ

3
(1).

As a side note, for trig-aesthetic curves (Eq. 4) we have

ĉ2 =
3ρ

5 −2ρ
3

ρ(2)
, (19)

and inserting this in the differential equation form (10) with
a = 0, b = 1 and c = 1/ĉ, we arrive at the invariant

ρ(2)(ρ
3 −ρ)+ρ

2
(1)(2−3ρ

2), (20)

depending only on ρ, ρ(1) and ρ(2). An even simpler expres-
sion uses the derivatives of curvatures:

κκ
′2 +κ

′′(1−κ
2). (21)

3.4. Plotting

The Cartesian coordinates of the curves can be given by in-
tegrating the cosine and sine of the tangent angle. Assuming
that the starting point is at the origin, and the starting angle
is 0, we arrive at the (x,y) coordinates(∫ s

0
cos
(

as+
b
c

sin(cs)
)

ds,
∫ s

0
sin
(

as+
b
c

sin(cs)
)

ds
)
,

(22)
which is, however, a non-trivial integral. Lehr cites Nielsen6

to have converted such ‘Lommel-integrals’ to the solu-
tion of differential equations, and mentions their connec-
tion to Bessel functions, but in the end these did not pro-
vide a solution. Still, the dissertation contains many pages
of exquisitely drawn curves (see Fig. 5) – how were these
created?

Lehr plotted the integrands and used a planimeter (a me-
chanical tool for measuring the area inside a closed curve) to
compute the integrals. Computations were carried out with
the help of a calculator and a slide-rule. (See also Fig. 6.)

3.5. Analysis of subfamilies

In this section we will look at the characteristics of subfami-
lies. The classification is based on the relation between a and
b, with a = b constituting the base form.
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(a) Planimeter

(b) Mechanical calculator

(c) Slide rule

Figure 6: Tools of the trade made in Germany in the 1930s.

3.5.1. a = b

See Figure 5a (No. 15–24) for some examples. As discussed
before, these curves have no inflections, just flat points, ly-
ing on a circle of radius x1/sinθ1. The remaining vertices
are on another circle (concentric with the first) with radius
x1 cotθ1 + y1. These circles degenerate to a pair of parallel
lines when θ1 = kπ (e.g. No. 24). In this case a single period
of the curve takes k full turns.

The curve is closed when θ1 is a rational multiple of π,
otherwise it goes on infinitely (e.g. No. 21). When θ1 = (m+
ν

n )π, with ν and n relative prime and ν < n, the shape is ‘n-
gonal’, and makes µ = mn+ ν full turns, so e.g. for No. 16

Figure 7: Appearing loops with a = b (θ1 =
π

5 ,
6π

5 , 11π

5 ).

Figure 8: Shrinking spring with θ1 = π ( a
b = 1, 4

3 ,
15
7 , 19

5 ).

n = 3, µ = 4. As m grows, more and more extra loops appear,
see Figure 7, and also Appendix A.

3.5.2. a > b

We will start from the base form a = b and start to increase
the a

b ratio to see how the curve reacts. For example with
θ1 = π

2 , we get ellipse-like closed curves (No. 25–27 in
Fig. 5a). There are two dotted ellipses in each of the figures:
one has the same curvatures at the vertices, and the other
has matching vertices (lying very close to the curve). As a

b
increases ( 4

3 , 2 and 4 in these three figures) the curve more
and more approaches the circle.

In the case of θ1 = π the base case is a series of loops, and
increasing a

b pushes them closer together, thereby touching
and intersecting each other, see Figure 8. Once again, the
curve approaches a circle when a

b goes to infinity.

In general, modifying θ1 changes the shape according to
the base form, while increasing a

b makes the loops more
circle-like and thus pushes them closer together.

3.5.3. a < b

As this is a very versatile part of the family, we divide it
further in our analysis.

3.5.3.1. θ1 = 0 (a = 0). Let us first look at the subgroup
θ1 = 0, which will serve as a basis for understanding the
other forms.

In this case it would suffice to look at the s ∈ [0, π

2c ] in-
terval because of its symmetry. The inflection point is at
the center, i.e., s̄ = π

2c , and its tangent angle there is given
by θ̄ = b

c . From the boundary condition κ0 = a+ b = 1 we
know that b = 1, so this class is the same as the trig-aesthetic
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Figure 9: Lemniscate with loops (θ1 = 0, θ̄ ≈ 5.5201).

curves, and θ̄ = ĉ. Several examples are shown in Figure 1
with the associated shape parameters ĉ.

When θ̄ < π

2 , the curve looks like the wave¶

y = ρ0 tan2
θ̄ ·
(

1− cos
(

cot θ̄

ρ0
x
))

, (23)

which has the same vertex curvatures and inflectional tan-
gent, but at the inflection point the wave curve has larger
(x,y) coordinates and arc length than our curve, so both
its amplitude and wavelength is larger. These deviations get
larger and larger as θ̄ approaches π

2 .

When θ̄ grows over π

2 , the loops get more and more cir-
cular and more closely packed, first touching and then inter-
secting each other. First a loop touches the next one, then,
for a larger θ̄ value, the one adjacent to that, and so on; in
the end it simultaneously touches all other loops and be-
comes a closed curve when θ̄ ≈ 2.4048, the first zero of
the Bessel function of the first kind J0. Its shape is simi-
lar to that of Bernoulli’s lemniscate, although the latter has
θ̄ = 3π

4 ≈ 2.3562 and is slightly more elongated.

As θ̄ increases until π, the curve goes through the same
process, but in the reverse order, touching and intersecting
loops recede until they are separated, and we again get a
wave-like form, but now there is an extra loop at the vertices.

For π ≤ θ̄ ≤ 2π, the wave contracts and expands in the
same way as before, except for the extra loops. The closed
curve is obtained at θ̄ ≈ 5.5201, which is the second zero of
J0 (see Fig. 9). As one can imagine, the same things happen
for 2π ≤ θ̄ ≤ 3π etc., just with more extra loops. Note that
the zeros of J0 approach 3π

4 +(n−1)π, so the series of closed
curves approaches Bernoulli’s lemniscate.

In general we can also state that for θ̄ ≤ π the curve re-
sembles the elastica, see details in Section 3.6.

3.5.3.2. θ1 =
π

2 (a= c
2 ). We start from the base form a= b,

when the excess angle φ is 0, and start to increase φ (by de-
creasing a and c, and increasing b). The curve starts to nar-
row, taking on a biscuit-like shape, until its sides touch, and
then intersect each other. Then we get back the base form
rotated sideways, with two extra loops, see the top of Fig-
ure 10. From here on, the same process is repeated, creating
two new loops, and so on.

¶ The tangent was not squared in the original, but that would not
satisfy the constraints given in the text.

Figure 10: The θ1 =
π

2 family with growing φ value.

Figure 11: The θ1 = π family with growing φ value.

3.5.3.3. θ1 = π (a = c). Starting from the base form a = b
(φ = 0), the curve contracts and then expands as φ is in-
creased, exactly like in the θ1 = 0 case, except for the extra
loop that is already present in the base form. See also Fig-
ure 11 showing the contraction phase.

3.5.3.4. Generalization. The base form is defined by θ1.
Increasing φ converts flat points into two inflection points
and an arc with negative curvature between them, appearing
as indentations or bulges. As these grow larger, the curve
seems to contract, and individual parts of the curve touch,
until eventually all vertices of a given type fall into the center
of the curve. Then these vertices move farther away from the
center, and vertices with the other curvature start to approach
it. The process repeats as φ increases by π.

3.6. Comparison with elastic curves

The subfamily a = 0 is very similar to the elastica family
studied by Jacob Bernoulli and Euler. Since this has recently
been also emphasized in a paper on trig-aesthetic curves,7
we will show the correspondences in notation.
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3.6.1. Elastica equations

Elastic curves have many definitions, based on pendulums,
or the minimization of bending energy while retaining arc
length. The one used by Lehr (following Bernoulli) is that
the curvature at a given point is proportional to the distance
from the line of force. Mathematically, taking the x axis as
the line, and the proportional factor −m2, this is described
by the equation

κ =−m2y. (24)

Since dθ/ds = κ and dy/ds = sinθ, we obtain(
d2y
ds2

)2

=

(
1−

(
dy
ds

)2
)

m4y2. (25)

Now using v = dy/ds, we have(
v

dv
dy

)2

= (1− v2)m4y2, (26)

and taking square root

dv
dy

=±
√

1− v2m2y
v

. (27)

Separating the variables and integrating, we get∫
v√

1− v2
dv =±

∫
m2ydy. (28)

With u = 1− v2 (i.e., vdv =− 1
2 du), this leads to∫

− 1
2
√

u
du =±m2y2

2
+C. (29)

The integral of the left-hand side is just −
√

u = −
√

1− v2

(plus an integration constant absorbed by C), so squaring
both sides we obtain

1− v2 =

(
m2y2

2
+C

)2

, (30)

where C also absorbs the ± sign. Finally this gives us

dy
ds

=

√
1−

(
m2y2

2
+C
)2

. (31)

(Lehr jumps directly from Eq. (25) to Eq. (31), as the inter-
mediate steps are straightforward. . . )

The above leads to an elliptic integral form of arc length:

s =

∫
y

y0

dy√
1−

(
m2y2

2 +C
)2

(32)

The intrinsic equation is then given by the use of the Ja-
cobi elliptic function cn:

κ = m
√

2(1−C)cn(ms). (33)

Once again, this step is not trivial. Let us first formulate the
differential equation for the elastic curve. Deriving Eq. (24)

d2
θ

ds2 =
dκ

ds
=−m2 dy

ds
=−m2 sinθ, (34)

so

d2

ds2 θ(s)+m2 sinθ(s) = 0. (35)

Multiplying by dθ/ds and integrating it results in

1
2

κ
2 −m2 cosθ = E, (36)

where E is the integration constant. Its value is not arbitrary,
however: from Eq. (31) we know that

√
1− cos2 θ = sinθ =

dy
ds

=

√
1−

(
m2y2

2
+C
)2

, (37)

so cosθ = m2y2

2 +C, and inserting it into Eq. (36) leads to

E =
1
2
(−m2y)2 −m2

(
m2y2

2
+C

)
=−m2C, (38)

so once again using Eq. (36) we obtain

dθ

ds
= κ =±m

√
2(cosθ−C). (39)

We can omit the sign as it will be absorbed by a constant
later on. Separating the variables and integrating, assuming
s0 = 0, results in

s =
1

m
√

2

∫
dθ√

cosθ−C
. (40)

For convenience we change the variable to θ̂ = θ

2 , using the
fact that cosθ = 1−2sin2 θ

2 :

s =
√

2
m
√

1−C

∫
dθ̂√

1− 2
1−C sin2

θ̂

(41)

=

√
2

m
√

1−C
·F
(

θ

2
,

2
1−C

)
, (42)

where F is the incomplete elliptic integral of the first kind.
Here k2 = 2

1−C is called the parameter, and k is the modulus.
Denoting the value of the incomplete integral as u, we have

u = ms

√
1−C

2
=

ms
k
, (43)

so θ

2 = am(u,k2), the Jacobi amplitude. This means that

cosθ−C = 1−2sin2 θ

2
−C = 1−C−2sn2(u,k2) (44)

= 2
(

1
k2 − sn2(u,k2)

)
, (45)

so

κ = 2m

√
1
k2 − sn2(u,k2). (46)
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Since dn2(u,k2) = 1− k2sn2(u,k2), we arrive at

κ =
2m
k

dn(u,k2) = m
√

2(1−C)dn(u,k2). (47)

Finally, using the relationship dn(u,k2) = cn(uk,1/k2), we
at last obtain the expression

κ = m
√

2(1−C)cn
(

ms,
1−C

2

)
. (48)

We see that in this form the modulus is
√

1−C
2 . The m pa-

rameter is essentially scaling the curve, and only C controls
the shape. In the differential equation form (Eq. 35), when
used with fixed boundary conditions θ(0) = 0 and κ(0) = 1,
the shape is controlled by λ := m2.

By squaring Eq. (39) we get

κ
2 = 2m2(cosθ−C), (49)

which for the above mentioned boundary conditions gives

1 = 2m2(1−C),

leading to the relationship

λ = m2 =
1

2(1−C)
. (50)

3.6.2. Comparison

Note that the ĉ parameter of trig-aesthetic curves is the same
as θ̄, when the latter is real. Refer to Figure 12 for a visual
comparison.

Lehr divides the family into classes based on the value of
the C integration constant, each exhibiting a distinct shape
type:

• C = 1 (λ =∞, θ̄ = 0): both curves degenerate to a line.
• 0 < C < 1 ( 1

2 < λ < ∞, 0 < θ̄ < π

2 ): both are similar to
sine waves; vertex curvature is ±1 for both, but the ampli-
tude and wavelength is smaller for trig-aesthetic curves.

• C = 0 (λ = 1
2 , θ̄ = π

2 ): Lehr states that this is the only
elastic curve that is also a Ribaucour curve (with factor
2), i.e., the radius of curvature is proportional to the nor-
mal directional distance to a given line. This seems not
to be the case: here the curvature (and not the radius of
curvature) is proportional to the normal distance.

• −1 < C < 0 ( 1
4 < λ < 1

2 , π

2 < θ̄ < π): we further divide
into 3 cases below.

– x̄ > 0: both curves touch, contract and intersect them-
selves, the difference in amplitude is more and more
visible.

– x̄ = 0: Bernoulli’s lemniscate is an intermediate form
between the two, as can be seen from the values of θ̄

(elastica: ≈ 130◦42′, lemniscate: 135◦, trig-aesthetic:
≈ 137◦47′13′′).

– x̄ < 0: the loops start to separate, much faster for the
elastica than for trig-aesthetic curves.

2 0.7227
1 1.0472

0.5 1.5708

0.4 1.85

0.35 2.05

0.3027 2.4048

0.282.7

0.2513

0.254

0.2495

0.210

Figure 12: Comparison of trig-aesthetic curves (black) and
elastica (red).7 The associated numbers show the values of
ĉ = θ̄ = 1

c for the former, and of λ for the latter, with the
boundary conditions θ(0) = 0 and κ(0) = 1. For rows where
λ > 1

4 , trig-aesthetic curves were selected based on visual
similarity, but not necessarily with the same θ̄ value; the
other examples are included to illustrate a variety of forms.

• C = −1 (λ = 1
4 , θ̄ = π): from here on, the two curves

have no connection. In this special case the elastica has
the closed form∥(

− 2
m

sin
θ

2
+

1
m

ln tan
(

θ

4
+

π

4

)
,

2
m

(
1− cos

θ

2

))
.

(51)
• −∞ < C < −1 (0 < λ < 1

4 , θ̄ imaginary): the elastica
takes on an ever-contracting spring-like form, while the
trig-aesthetic curve (π < ĉ < ∞) goes through contrac-
tions and expansions as explained in Section 3.5.

• C = −∞ (λ = 0, θ̄ imaginary): corresponds to the case
ĉ =∞; both curves are circles.

3.7. Space curves

As a generalization to 3D space, we can add a constraint on
the radius of torsion τ, similarly to Eq. (5):

1
τ
= α+βcos(γs+δ). (52)

But the Frenet equations can only be integrated easily when
δ = 0, c = γ, and αβ−ab = 0, i.e.,

1
ρ
= a+bcos(cs),

1
τ
= α+

ab
α

cos(cs). (53)

∥ With some corrections.
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These are all helices that can be constructed on a cylinder
whose normal section is a curve of Eq. (5).

Since this line of generalization does not seem to be very
fruitful, Lehr turns to curves defined on the sphere with
geodesic curvature

κg =
1
ρg

= a+bcos(cs). (54)

Since κ
2 = κ

2
g +κ

2
n, and the normal curvature κn on a sphere

of radius R is 1
R , we have

1
ρ
=

√
(a+bcos(cs))2 +

1
R2 ,

1
τ
=

Rbcsin(cs)
R2(a+bcos(cs))2 +1

.

(55)

If R goes to infinity, the torsion approaches zero and we get
back our original curves. Otherwise this leads to a complex
Riccati differential equation, but we can make some general
remarks.

• The curves are periodic with period 2π

c .
• The curvature is always positive, and maximal at the end-

points.
• The minimal value of (ordinary or geodesic) curvature is

at the midpoint s = π

c , where the torsion is zero.
• The geodesic curvature becomes zero when cos(cs) =− a

b
(occurs for two values when a < b, symmetric to the mid-
point).

For easier analysis and plotting, Lehr uses stereographic pro-
jection onto the equatorial plane (see Fig. 5b). For a spherical
point (x,y,z) the projection is

(ξ,η) =
R

R− z
(x,y), (56)

while the inverse projection is

(x,y,z) =
1

ξ2 +η2 +R2 (2R2
ξ,2R2

η,R(ξ2 +η
2 −R2)).

(57)
A circle around a projected point (ξ0,η0) with radius ρ0 is
also a circle on the sphere in the plane

Ax+By+Cz+D = 0 (58)

with A : B : C : D being∗∗

2Rξ0 : 2Rη0 : ξ
2
0 +η

2
0 −ρ

2
0 −R2 : −R(ξ2

0 +η
2
0 −ρ

2
0 +R2).

(59)
Then the radius of the 3D circle ρ depends on the distance δ

of the plane from the center (ρ2 = R2 −δ
2). Consequently:

ρ
2 =

4R4
ρ

2
0

(ξ2
0 +η2

0 −ρ2
0 −R2)2 +4R2(ξ2

0 +η2
0)
. (60)

If we now look at a circle going through (ξ∗,η∗) with tan-
gent angle t∗ (measured from the positive ξ axis), we get

ξ0 = ξ
∗±ρ0 sin t∗, η0 = η

∗∓ρ0 cos t∗, (61)

∗∗ The equations from here on contained errors in the original.

so if we introduce d2 = ξ
∗2 +η

∗2 for the squared distance
of the point from the origin, and c = ±ξ

∗ sin t∗ ∓η
∗ cos t∗

for the signed distance of the origin from the tangent line,
we arrive at

ρ
2 =

4R4
ρ

2
0

(d2 +2ρ0c−R2)2 +4R2(d2 +ρ2
0 +2ρ0c)

, (62)

and then

ρ0 =
(d2 +R2)ρ

2(Rδ− cρ)
=

d2 +R2

2(e− c)
, (63)

with e = Rδ

ρ
.

For a spherical curve with known geodesic curvature, the
curvature circle is obtained by intersecting the sphere with
the osculating plane. From this we can compute the curva-
ture circle in the plane, whose radius gives the radius of cur-
vature for the projected curve (note that with ρ being the
radius of curvature, we have e = R2

ρg
). Now we have all infor-

mation to plot the 2D image of the curve.

Let us take example No. 31 in Figure 5a (a trig-aesthetic
curve with ĉ = 11

14 ), and create its geodesic curvature ver-
sion on a large sphere. The resulting curve is very similar
(see Fig. 5b, No. 89, ρg(0)/R = 0.4). As we reduce the
sphere’s radius, the vertices approach each other, and then
separate again (No. 90–94, ρg(0)/R = 1,1.2,1.37,1.4,2).
The curve can also close on itself, as shown in No. 95
(ρg(0)/R = 2.94). As R approaches 0, the curve approxi-
mates a great circle of the sphere.

Conclusion

Eduard Lehr described the curve family defined by Eq. (5),
investigating the parameters’ effect on its different shapes,
including the base forms and what are now called trig-
aesthetic curves. Notes on derived curves (evolute, offset and
involute) were supplied. A comparison to Euler’s elastica
was also included, as well as preliminary work on general-
ization to space curves, particularly to spherical curves.

In this work we have aimed to extract the most interesting
parts from Lehr’s dissertation, and also supplemented it in
several places, notably on the derivation of the elastic curve,
and by the addition of a figure comparing it to trig-aesthetic
curves. Several errors in the equations were corrected, and
some biographical background on Lehr was also included
for completeness.
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Figure 13: Applet for experimenting with base forms.
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Appendix A: Applet for exploring base forms

The TCL/TK applet in Figure 13 is a convenient tool for
plotting different base forms; it can also be easily modi-
fied to investigate other curves. Here a = b = 1 and c =
nsides/nloops = n/µ. The source code is shown in Figure 14,
and is embedded in the PDF version of this document.

Figure 14: TCL/TK source for the applet in Fig. 13.
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lassign {500 3 200} size lineWidth resolution; # params
lassign {5 8} sides loops
wm title . "Grundformen"
canvas .canvas -width $size -height $size -bg white
frame .f
scale .f.sides -variable sides -from 1 -to 100         \
    -label Sides -orient horizontal -command redraw
scale .f.loops -variable loops -from 1 -to 100         \
    -label Loops -orient horizontal -command redraw
pack .f.sides .f.loops -side left -expand 1 -fill x
pack .canvas .f -fill x
proc redraw args {
    global resolution loops size lineWidth
    .canvas delete all
    set res [expr {$resolution*$loops}]
    set smax [expr {2*$loops*acos(-1)}]
    lassign {{0 0} {0 0} {0 0} 0.0} p bbmin bbmax s1
    set points [list $p]
    for {set i 0} {$i < $res} {incr i} {
        set s [expr {$smax*$i/($res-1.0)}]
        set d [list [integrate fx $s1 $s]              \
                    [integrate fy $s1 $s]]
        set p [add $p $d]
        set bbmin [vmin $p $bbmin]
        set bbmax [vmax $p $bbmax]
        lappend points $p
        set s1 $s
    }
    set scale [expr {$size/[distance $bbmin $bbmax]}]
    set center [mul [add $bbmin $bbmax] -0.5]
    set offset [list [expr {$size/2}] [expr {$size/2}]]
    set coords {}
    foreach p $points {
        lappend coords {*}[add [mul [add $p $center]   \
                                    $scale]            \
                               $offset]
    }
    .canvas create line $coords -width $lineWidth
}
proc vmin {u v} {
    list [expr {min([lindex $u 0],[lindex $v 0])}]     \
         [expr {min([lindex $u 1],[lindex $v 1])}]
}
proc vmax {u v} {
    list [expr {max([lindex $u 0],[lindex $v 0])}]     \
         [expr {max([lindex $u 1],[lindex $v 1])}]
}
proc add {u v} {
    list [expr {[lindex $u 0]+[lindex $v 0]}]          \
         [expr {[lindex $u 1]+[lindex $v 1]}]
}
proc mul {u x} {list [expr {[lindex $u 0]*$x}]         \
                     [expr {[lindex $u 1]*$x}]}
proc sub {u v} {add $u [mul $v -1]}
proc dot {u v} {expr {[lindex $u 0]*[lindex $v 0] +
                      [lindex $u 1]*[lindex $v 1]}}
proc norm u {expr {sqrt([dot $u $u])}}
proc distance {p q} {norm [sub $p $q]}
proc theta {s} {
    global sides loops
    set c [expr {($sides+0.0)/$loops}]
    expr {$s+1/$c*sin($c*$s)}
}
proc fx {s} {expr {cos([theta $s])}}
proc fy {s} {expr {-sin([theta $s])}}
proc integrate {f a b} {
    set x {-0.906179845937 -0.538469310107 0           \
            0.538469310107 0.906179845937}
    set w {0.236926885057 0.478628670499               \
           0.568888888889 0.478628670499 0.236926885057}
    set sum 0
    set m [expr {($a+$b)/2}]
    for {set i 0} {$i < 5} {incr i} {
        set xi [expr {($b-$a)/2*[lindex $x $i]+$m}]
        set sum [expr {$sum+[lindex $w $i]*[$f $xi]}]
    }
    expr {$sum*($b-$a)/2}
}
redraw


