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Abstract

After reviewing different approaches, a new algorithm is presented for fairing B-spline curves and surfaces. It is
based on a special target curvature, computed from the not-yet-faired curve or surface. The method is parameter
invariant and local. It moves a single control point at a time, so to find a global optimum iterative methods with
appropriate heuristics need to be applied. The results are illustrated by a few examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling

1. Introduction

Digital Shape Reconstruction (formerly called Reverse En-
gineering) is a fast growing area in Computer Aided Geo-
metric Design, which deals with the creation of geometric
models using measured data. In many practical applications
of DSR, surface fairness is a crucial matter, in particular in
the automobile industry. Although fairness does not have an
exact mathematical definition, researchers agree that it is in-
herent to pleasing aesthetics, and that the curvature of fair
surfaces must be distributed evenly. A wide range of graphi-
cal interrogation methods (e.g. curvature maps, isophote and
reflection lines) has been developed to detect small surface
artifacts, but even with these, today fairing is a laborious
manual process that needs a lot of skill. This is why there
is a natural need for (semi) automatic fairing algorithms.

There are various approaches that can make a surface
more fair. (i) Variational methods integrate fairing into the
surface approximation process. (ii) Postprocessing methods
usually define some fairness measure, and try to minimize it
by changing the existing surface geometry, while maintain-
ing some constraints, such as the maximum deviation from
the original surface. Here we will only deal with the latter
approach that seems to be more useful in the DSR context.
It is important to note, that though the faired surfaces should
be smooth, the highly curved features of the original shapes
must be preserved.

Since research on surface fairing methods inevitably in-

volves research on two-dimensional curve (spline) fairing,
here we will summarize the previous work on fairing both
curves and surfaces, introducing and comparing the most im-
portant fairness measures and algorithms.

In Section 2 different concepts of fairness will be pre-
sented. Section 3 gives an overview on previous work in the
literature. Section 4 presents our proposed algorithm, fol-
lowed by test results in Section 5.

2. Fairness

Fairness may have different meanings in different applica-
tions. Depending on the requirements, even the same surface
can be qualified as fair or unfair, however, there are general
guidelines that can be applied to most of the cases.

One widely used criterion of fairness is the smoothness
and smooth distribution of reflection lines. If a fair object
was placed into a room lit by parallel lights, the reflections
of the light source should bend smoothly and evenly over the
surface. This effect can be simulated using computer graph-
ics — the most modern modelling systems offer these kinds
of rendering options.

Isophote lines are very similar to reflection lines, since
their smoothness depends on the change of the first deriva-
tive of the surface. An isophote line is a set of surface points
where the angle between the normal vector and the viewing
direction is the same (within a given tolerance). Since this
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map is much simpler than the previous, but reveals just about
the same flaws, it is more often seen in practice. Another
variant is the highlight band,2 which can also be computed
very fast.

While these maps simulate something that is visible to the
eye under special conditions, there are others that only have
a mathematical meaning, but still proved to be crucial in ex-
amining fairness. These are the curvature maps and the cur-
vature combs, which depend on the second derivatives. Cur-
vature maps colour-code the curvature values and can have
various types (Gaussian, mean, minimum, maximum, etc.),
curvature combs display the values as orthogonal straight
line segments along a curve.

These methods are also called visual interrogation tools,
because they help the user to find minor discontinuities or
wiggles on the surface. Since these are found by looking at
the changes of the map, they show flaws of one degree higher
than the derivatives the tool depends on.

In order to create a fairing algorithm, it is common to de-
fine a fairness measure, i.e. a functional that represents the
fairness of the surface. In other words, we can say that a sur-
face S is fair, if

F(S) < τ

applies, where τ is a user-defined tolerance. One “classical”
definition of fairness by Farin and Sapidis is as follows:

A curve is fair if its curvature plot is continuous
and consists of only a few monotone pieces.4

In the next section, we will review what sort of other al-
ternatives exist.

3. Previous Work

In this section we introduce the most well-known or promi-
nent measures and algorithms in the literature. We will also
present curve-fairing methods, since most results for sur-
faces can be easily generalized from them.

As Roulier and Rando point out, we cannot hope to have a
universal fairness measure or algorithm, but we should strive
to create new ones, in order to give designers the freedom of
choosing the most suitable algorithms for their tasks.14

3.1. Fairness measures

A natural measure for curve fairness is the strain energy, that
is based on a drawing technique used in ship design, from
the 18th century until today. To create a smooth curve, metal
weights were placed at the interpolation points and a flexi-
ble spline was spanned between them. The resulting curve c
minimizes the strain energy, yielding the measure

E =
Z

(κ(s))2ds, (1)

where κ(s) is the curvature of the curve as a function of the
arc length. This minimizes the mean curvature, while giving
a penalty to the extreme values by squaring.14

Computing the curvature can be difficult, so it is often re-
placed by a simpler, parameter-dependent formula:

Ê =
Z

(c′′(t))2dt. (2)

The third degree interpolating spline minimizes this value,
but has the drawback that in cases where the parameteriza-
tion substantially differs from the arc-length parameteriza-
tion, fairness is not guaranteed, and unexpected results may
occur.

Since neither (1) nor (2) penalizes the sign change of the
curvature, curves faired by these measures may preserve un-
wanted inflections. Different variations of the interpolating
spline were devised to avoid this, e.g. the spline in tension or
the ν-spline.4

Moreton and Séquin introduced another measure, called
Minimum Variation Curve, optimizing the variation of the
curvature:12

EMVC =
Z

(κ′(s))2ds. (3)

This has the advantage that it does not create unnecessary
inflection points due to its convexity-preserving property.

The curve-fairing measures introduced so far all have their
surface-fairing equivalents. Similar to the strain energy, in
the surface case we can minimize the thin plate energy

ΠP =
Z Z

S
a(κ2

1 +κ
2
2)+2(1−b) κ1κ2 dS, (4)

where κ1 and κ2 are the principal curvatures of the surface S
and a, b are material-specific constants that usually take the
values a = 1 and b = 0 or b = 1.7

This also has a simpler variant

Π =
Z Z

A
S2

uu +2S2
uv +S2

vv du dv, (5)

which is parameter dependent, so it can only be used safely
for isometric parameterization.

Moreton and Séquin suggested an alternative measure
based on the variation of the curvature:

ΠMV S =
Z Z

S

(
∂κ1
∂e1

)2

+
(

∂κ2
∂e2

)2

dS, (6)

that vanishes on spheres, cones and tori. Although this mea-
sure gives excellent results, it requires very complex compu-
tations.

3.2. Fairing algorithms

One of the simplest, widely used curve-fairing method is
knot removal and reinsertion (KRR), originally conceived
by Kjellander and later made local by Sapidis and Farin.3
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If we define an order k B-spline as

x(t) =
n

∑
i=0

diNi,k(t), t ∈ [tk−1, tn+1], (7)

where di are the control points, Ni,k are the B-spline bases
and T = (t j)n+k

j=0 are the knots, then it is at most Ck−2-
continuous at the knot points.

We can add knots to a B-spline in a way that its shape does
not change. This can be unambiguously done by multiplying
the control points with a matrix. On the other hand, if we take
out a knot, we can only preserve the shape if the curve was
originally Ck−1-continuous at that knot point.

So the problem is locating the control points of

x̃ =
n−1

∑
i=0

d̃iNi,k,T̃ (T̃ ⊂ T ) (8)

in such a way that d = Ad̃ applies, where A is the knot in-
sertion matrix.8 This breaks down to an overdefined equa-
tion that can have several approximate solutions. Farin gives
the most local solution for third degree B-splines, ensuring
C3 continuity at the knot by repositioning only one control
point.4

This gives the idea of the KRR algorithm, i.e. to find, re-
move and then reinsert the knot where the third derivative
has the largest discontinuity. The process may be iterated un-
til a suitable end condition is met. Finding such a condition
is not a trivial task. A vast range of heuristics can be applied,
including best-first-search8 and simulated annealing.13

Eck and Hadenfeld fix all but one control points and lo-
cally minimize the fairness measure

El =
Z tn+1

tk−1

(
x̃(l)(t)

)2
l = 2,3 (9)

while keeping the distance from the original curve under a δ

tolerance:3

max{|x(t)− x̃(t)| | t ∈ [tk−1, tn+1]} ≤ δ. (10)

Because of the convex hull property, this is easily done by
preserving the |dr − d̃r| ≤ δ inequality:

d̃∗r = dr +δ · d̃r −dr

|d̃r −dr|
. (11)

Both of these methods have equivalents in surface fairing.
The main disadvantage of the KRR algorithm is that remov-
ing a knot changes a whole line of control points in the other
parametric direction, e.g. if we have a surface

X(u,v) =
n

∑
i=0

m

∑
j=0

di jNi,k,U (u)N j,l,V (v),

(u,v) ∈ [uk−1,un+1]× [vl−1,vm+1],

(12)

where U = (ui)n+k
i=0 and V = (v j)m+l

j=0 represent the knots, re-
moving a knot vs means removing a knot from all of the

B-splines xi = ∑
m
j=0 di jN j,l,V (t), where i = k, . . . ,n. Further-

more, the generalized KRR only ensures C3 continuity in
one parametric direction.

Hahmann proves that it is sufficient to remove and rein-
sert a knot in only three rows or columns of B-splines, thus
the algorithm can be made local for surfaces.8 However, C3

continuity in only one direction is not satisfactory in real-life
applications.

Hadenfeld proposed a fairing method using the measure
(5), as above only one control point is moved at a time and
the largest deviation is constrained from the original.7

In a recent publication1 fairing was performed through the
optimization of knot vectors; in our research, however, we
preserve the original knots.

4. The New Algorithm

In this section we first sketch a fairing algorithm for curves,
then we generalize it for surfaces. We can expect that the cur-
vature comb of a fair curve is smooth, without any jumps or
sudden changes. Therefore we can smooth the curve defined
by the curvature comb’s endpoints, which is practically the
same as the evolute, due the κ = 1/ρ equality. We will call
the smoothed curve the target evolute.

Now we want to find a curve that is close to the original,
but whose evolute is the target evolute. This also defines a
fairness measure: the closer the evolute is to the target evo-
lute, the fairer is the curve. Let n denote the normal and e the
target evolute, then our fairness measure is

E =
Z
‖(c(t)+ρn(t))− e(t)‖2dt, (13)

assuming that the two curves have a common parameteriza-
tion. The algorithm for finding the minimum of this func-
tional will be presented later. Controlling the deviation from
the original curve can be managed in the same manner as
written in the previous section.

Since the evolute (and the curvature comb) may be self-
intersecting, we use directly the curvatures instead, so our
measure becomes

Ê = ∑
i
|κ(ti)−g(ti)|2, (14)

where g is the smoothed (target) curvature.

In the surface case the single curvature need to be replaced
by the two principal curvatures. Let g1 and g2 be the target
curvatures based on κ1 and κ2, then

Π̂ = ∑
i

∑
j
(|κ1(ui,v j)−g1(ui,v j)|2+

|κ2(ui,v j)−g2(ui,v j)|2)
(15)

is a meaningful fairness measure.
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4.1. Determining the target curvature

Any simple and fast smoothing method can be effectively
used for defining the target curvature, for example averaging
the consecutive sample points of the evolute. Smoothness of
the target curvature is much more important than to be close
to the evolute of the original curve, therefore we should use
a loose sampling rate. Global averaging can remove parts of
the curvature that represent features, so the user should be
allowed to restrict the smoothing or edit the target curvature
manually.

Another possibility is to fit a NURBS curve over the sam-
pled points. For surfaces this leads to the solution of a system
of linear equations that minimizes the functional

F(gq) = ∑
i

∑
j
‖gq(ui,v j)−κ

0
q(ui,v j)‖2 (q = 1,2), (16)

where κ
0
q is a principal curvature of the original surface (here

the curvatures are interpreted as surfaces over the parameter
domain). To get smooth results, we should also minimize the
curvature of the fitted surface:

F̂(gq) =∑
i

∑
j
‖gq(ui,v j)−κ

0
q(ui,v j)‖2+

Z
u

Z
v

κ̂q(u,v) du dv,
(17)

where κ̂g is the curvature of gq.

Having the target curvatures for our curves and surfaces,
the next step is to modify the current entities in such a way,
that their curvature gradually gets closer to the target.

4.2. Finding the optimal solution

For simplicity’s sake here we present an iterative method that
moves only one control point in every iteration. This has the
advantage of locality in exchange for speed, but this draw-
back is countered by our choice of minimization algorithm
— the downhill simplex method, which is simple and very
fast.13 An iteration consists of the following steps:

1. Select the next control point to move from a priority
queue.

2. Minimize the fairness measure by moving the selected
control point.

3. Calculate a new control point position if it falls too far
from the original (see (11)).

Selection of the next control point has great influence on
the quality of fairness. Selecting the control point where the
largest deviation of the target curvature occurs is a natural
choice. However, this can lead to a deadlock, if the same
control point is chosen over and over again. A list of the
recently moved control points may be kept in order to avoid
this. Also, boundary control points should not be selected for
most applications.

Other minimization procedures to find the global opti-
mum can also be used, such as simulated annealing.

Figure 1: The initial curve with its target curvature in green.

Figure 2: The faired curve.

5. Results

Figure 1 shows a curve before fairing. The original curvature
comb and the original control polygon are also shown. The
green line is a smooth version of the given curvature comb,
this is the target curvature we want to approximate. Figure 2
shows the curve after fairing, the final curvature distribution
is clearly much better, though it is not necessarily identical to
the target function due to tolerance constraints and the final
number of steps. Figures 3–4 highlight the effect of fairing
through extrusion surfaces.

Figure 5 shows the actual and desired target curvature dis-
tributions for a car body surface element. Table 1 summa-
rizes the numerical results. As we can see, there is minimal

Figure 3: Extrusion surface of the initial curve.
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Figure 4: Extrusion surface of the faired curve.

Iteration Fairness measure Max. distance (mm)

0 0.901531 0.00000

200 0.244919 2.91302

400 0.223582 4.40624

600 0.215052 5.02049

800 0.201543 5.14342

1000 0.198280 5.85641

Table 1: Fairing phases.

improvement after 400 iterations, which justifies to stop iter-
ating. Figure 6 shows the isophote lines of the original sur-
face before and after fairing. Figure 7 is a deviation map to
show where the largest positional modifications took place
in order to get the final faired surface.

6. Conclusions

Fairing curves and surfaces is a complex problem. Unfor-
tunately, the goal of generating perfectly fair shapes can-
not be unambiguously formulated with mathematical terms,

Figure 5: κ1 and κ2 principal curvatures (teeth) and the tar-
get curvature functions.

Figure 6: Isophote map of the initial and final surface.

Figure 7: Distance map showing deviations from the origi-
nal surface.

and there are many alternatives. Authors propose a method
where a smoothed target curvature function is approximated
step by step. The algorithm modifies a single control point
at a time. Applying an iterative strategy, the global shape is
optimized until the magnitude of the improvement becomes
negligible. Our future research is going to replace the current
iterative methods by direct methods, that can efficiently lead
to fair curves and surfaces.

Acknowledgements

This research has been conducted within Geomagic Hun-
gary, Ltd., Budapest. The first author is a PhD student at the
Information Faculty of the Loránd Eötvös Science Univer-
sity.

References

1. B. Aszódi, Sz. Czuczor, L. Szirmay-Kalos, NURBS
Fairing by Knot Vector Optimization. Journal of
WSCG, Volume 10, pp. 19–26, 2004.

2. K-P. Beier, Y. Chen, The Highlight Band, a Simplified



P. Salvi and T. Várady / Fairing Curves and Surfaces

Reflection Model for Interactive Smoothness Evalua-
tion. In: N. S. Sapidis (Ed.), Designing Fair Curves and
Surfaces, pp. 213–230, SIAM, ISBN 0-898-71332-3,
1994.

3. M. Eck, J. Hadenfeld, Local Energy Fairing of B-
Spline Curves. Computing Supplement 10, pp. 129–
147, 1995.

4. G. Farin, Curves and Surfaces for Computer Aided Ge-
ometric Design. A Practical Guide. Academic Press,
5th edition, 2002.

5. G. Farin, J. Hoschek, M.-S. Kim (Eds.), Handbook
of Computer Aided Geometric Design. North-Holland,
2002.

6. J. Hadenfeld, Fairing of B-Spline Curves and Surfaces.
In: J. Hoschek, P. Kaklis (Eds.), Advanced Course on
FAIRSHAPE, pp. 59–75, Teubner Stuttgart, ISBN 3-
519-02634-1, 1996.

7. J. Hadenfeld, Local Energy Fairing of B-Spline Sur-
faces. In: M. Daehlen, T. Lyche, L. L. Schumaker
(Eds.), Mathematical Methods for Curves and Surfaces,
pp. 203–212, Vanderbilt University Press, ISBN 0-826-
51268-2, 1995.

8. S. Hahmann, S. Konz, Knot-Removal Surface Fairing
using Search Strategies. Computer Aided Design 30,
pp. 131–138, 1998.

9. S. Hahmann, Shape improvement of surfaces. Comput-
ing Supplement 13, pp. 135–152, 1998.

10. M. Hoffmann, Geometric and Solid Modeling. An In-
troduction. Morgan Kaufmann Publishers, 1989.

11. H. P. Moreton, C. H. Sequin, Functional Optimization
for Fair Surface Design. ACM SIGGRAPH Computer
Graphics, Volume 26, Issue 2, pp. 167–176, 1992.

12. H. P. Moreton, C. H. Sequin, Minimum Variation
Curves and Surfaces for Computer-Aided Geometric
Design. In: N. S. Sapidis (Ed.), Designing Fair Curves
and Surfaces, pp. 123–159, SIAM, ISBN 0-898-71332-
3, 1994.

13. W. H. Press, S. A. Teukolsky, W. T. Vetterling,
B. P. Flannery, Numerical Recipes in C. Cambridge
University Press, 2nd Edition, ISBN 0-521-43108-5,
1992.

14. J. Roulier, T. Rando, Measures of Fairness for Curves
and Surfaces. In: N. S. Sapidis (Ed.), Designing Fair
Curves and Surfaces, pp. 75–122, SIAM, ISBN 0-898-
71332-3, 1994.


	Introduction
	Fairness
	Previous Work
	Fairness measures
	Fairing algorithms

	The New Algorithm
	Determining the target curvature
	Finding the optimal solution

	Results
	Conclusions
	References

