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Abstract
A new parametric surface representation is proposed that interpolates the vertices of a given closed mesh of ar-
bitrary topology. Smoothly connecting quadrilateral patches are created by blending local, multi-sided quadratic
interpolants. In the non-four-sided case, this requires a special parameterization technique involving rational
curves. Appropriate handling of triangular subpatches and alternative subpatch representations are also dis-
cussed.

1. Introduction

Surface representations based on control polyhedra come in
various guises, including recursive subdivision,1 generalized
splines7 and ‘manifold’ approaches.5 In this paper we exam-
ine a variation of the manifold-based construction exempli-
fied by the works of Zorin,13, 10 and recently by Fang.3

Figure 1 shows the basic idea. The input is a closed mesh.
We assume that it only contains quads – if not, we can per-

Figure 1: Overlapping quadratic nets around a quad.

form a central split on all faces (similarly to a Catmull–
Clark subdivision step) to get rid of the multi-sided patches
while retaining all original vertices. For each quad, the 1-
rings around its corners define (multi-sided) quadratic con-
trol nets. We can generate four local patches interpolating
these control points, and evaluate them in the parametric re-
gion associated with the quad (Fig. 2). The resulting surface
is created by blending these together.

Note that while most similar methods are approximative,
here we focus on patches that interpolate the input points.
The interpolation criterion makes the interpolants more sim-
ilar in the given region, which may enhance the quality of
the resulting surface.

The rest of the paper is organized as follows. Sec-
tion 2 shows the construction in the simple case of regu-
lar quadmeshes. Handling of irregular vertices is explained
in Section 3, with the definition of Quadratic Generalized
Bézier (QGB) patches in Section 3.1 and a parameterization
based on rational Bézier curves in Section 3.2. Some test
results are presented in Section 4; notes on future work con-
clude the paper.

2. Regular meshes

In a regular (closed) mesh all vertices have a valency of 4, so
all control nets around a quad will be quadrilateral. We use
quadratic tensor-product Bézier patches for the interpolants.

Let Ci and Ei (i = 1 . . .4) denote the corner and edge con-
trol points, with Ei being between Ci−1 and Ci (with cyclical
indexing). The middle control point is denoted by M. Then
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Figure 2: Blending the local interpolants. Dots indicate a point of evaluation in each; the last image shows the resulting patch.

the interpolant is defined as
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i (u)B

2
j(v), (1)

where Bd
k (t) is the k-th Bernstein polynomial of degree d at

parameter t, and
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P01 = Ê3, P11 =
1
4
(16M−

4
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(Ci +2Êi)), P21 = Ê1,

P02 = C2, P12 = Ê2, P22 = C1.
(2)

Here Êi = 2Ei − 1
2 (Ci−1 +Ci) is the control point position

s.t. [Ci−1, Êi,Ci] define a quadratic Bézier curve interpolat-
ing Ei.

The parameterization of the quad is in [0,1]2, and is ro-
tated locally with the following interpolation constraints in
mind (S denotes the patch to be created):

S(0,0) = M, S(1,0) = E1,

S(0,1) = E2, S(1,1) = C1. (3)

The interpolant point corresponding to the (u,v) point in the
quad’s domain is then ((u+1)/2,(v+1)/2).

Consequently, the quad patch can be defined as the blend
of the four interpolants:

S(u,v) =
4

∑
i=1

Ii
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,
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2

)
Φ(ui,vi). (4)

The local parameterizations are defined as

u1 = u, v1 = v,

u2 = v, v2 = 1−u,

u3 = 1−u, v3 = 1− v,

u4 = 1− v, v4 = u. (5)

The blending function is the product of two 1-argument
blends

Φ(u,v) = Ψ(u) ·Ψ(v) (6)

with the following constraints:

Ψ(0) = 1, Ψ(1) = 0, Ψ
(k)(0) = Ψ

(k)(1) = 0 (7)

for some k > 0. For finite k, Hermite blends can be applied:

Ψ(t) =
k

∑
i=0

B2k+1
i (t). (8)

For k = ∞ there are several options, including bump func-
tions and expo-rational B-splines.8 We have used the k = 2
Hermite blend for all examples in the paper.

3. Irregular vertices

An irregular vertex generates a non-quadrilateral control net.
We interpolate these points by quadratic generalized Bézier
patches, as defined below.

3.1. Quadratic Generalized Bézier (QGB) interpolants

Generalized Bézier (GB) patches11 are normally defined
only for cubic or higher degrees, but is easy to further gen-
eralize the construction to the quadratic case. As this will be
a C0 interpolant, its equation will be even simpler than that
of the original.

The surface is defined over the regular n-sided polygon
{(cos 2kπ

n ,sin 2kπ

n )}, k = 0 . . .n−1, and for each side we cre-
ate local coordinate mappings

si(u,v) = λi/(λi−1 +λi), di(u,v) = 1−λi−1 −λi, (9)

where {λi} are the Wachspress coordinates4 of (u,v) relative
to the domain polygon.

Using the notations of the previous section,
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n

∑
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1
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Here B0 denotes the weight deficiency
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(11)
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(a) Bilinear map (b) Discontinuity problem (c) Rational curve map (d) Curves in a triangle

Figure 3: Quad → interpolant mappings.

and the central control point P0 is defined s.t. the patch in-
terpolates M:

P0 =
n2M−∑

n
i=1

(
Ci +2Êi

)
n(n−3)

. (12)

Note that for n = 4 this is exactly the same as the tensor-
product interpolant in Section 2. It is also easy to see that for
n = 3 this is a quadratic triangular Bézier patch.

3.2. Parameterization

We still need a mapping between the quad domain [0,1]2

and the interpolant’s domain (a regular polygon inscribed
in the unit circle). The associated part of the latter is a kite
defined by the points (0,0), (c,−s), (1,0) and (c,s), where
c = 1

2 (cos(2π/n)+ 1) and s = 1
2 sin(2π/n), see Figure 3. A

naïve approach would be to use a bilinear mapping (Fig. 3a).
This presents a problem however: with this simple mapping
adjacent parts of the same interpolant would be parameter-
ized discontinuously (Fig. 3b). In the rest of this section, we
will construct a mapping that is C∞-continuous (except at
the origin, which is singular).

The proposed method works by creating pencils of
quadratic rational Bézier curves in the two parametric direc-
tions, and the mapping of (u,v) is defined to be the intersec-
tion of the u-curve with the v-curve – see Figure 3c, where
the following notations are also shown:

V0 = (c+ ĉ,−s− ŝ), V1 = (2c−1,−2s),

V2 = (c,−s), V3 = (1,0),

V4 = (c,s), V5 = (2c−1,2s),

V6 = (c+ ĉ,s+ ŝ), (13)

where ĉ = 1
2 (cos(4π/n)−1) and ŝ = 1

2 sin(4π/n). The con-
trol points and rational weights of u-curves are given as

R0 = V0(1−u)+V1u, w0 = 1,

R1 = V2uexp(u2 −u), w1 = 1/u,

R2 = V4(1−u)+V3u, w2 = 1. (14)

Similarly for v-curves:

R0 = V6(1− v)+V5v, w0 = 1,

R1 = V4vexp(v2 − v), w1 = 1/v,

R2 = V2(1− v)+V3v, w2 = 1. (15)

Then the curves themselves can be evaluated with the for-
mula

r(t) = ∑
2
i=0 RiwiB2

i (t)

∑
2
i=0 wiB2

i (t)
. (16)

The exponential term in the middle control point is there
to accommodate for the triangular domain where the V2 −
V3 − V5 − V6 − (0,0) polygon is concave, and this helps
pulling back the curve near the origin. Figure 3d shows v-
curves in a triangle for v = k/20 values, k = 0 . . .20.

For a given (u,v) point in the quad domain, we need to in-
tersect the corresponding u- and v-curves. This is easily done
with nested golden section searches in the [ 1

2 ,1] interval.6
While this is a bit expensive, it can (and should) be precom-
puted.

3.3. Triangular patches

The three-sided QGB patch is a quadratic Bézier triangle,
and as such, does not have a central control point. Since we
want to interpolate the middle point M, we should degree-
elevate the boundaries to cubic and use a cubic Bézier trian-
gle, which has an extra degree of freedom:

P300 = C1, P030 = C2, P003 = C3,

P210 =
1
3
(C1 +2Ê2), P120 =

1
3
(C2 +2Ê2),

P021 =
1
3
(C2 +2Ê3), P012 =

1
3
(C3 +2Ê3),

P102 =
1
3
(C3 +2Ê1), P201 =

1
3
(C1 +2Ê1), (17)
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Figure 4: Trebol model (left: cage, center: isophote map, right: mean curvature map).

and

P111 =
1
6
(27M− ∑

max(i, j,k)=3
Pi jk−3 ∑

max(i, j,k)=2
Pi jk). (18)

Then the patch can be evaluated by

I(u,v) = ∑
i+ j+k=3

Pi jk
6

i! j!k!
λ
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1λ

j
2λ

k
3. (19)

3.4. Alternative representations

There are many multi-sided surface representations that we
could use; for a survey, see our upcoming paper.12 In partic-
ular, Midpoint and Midpoint Coons patches9 are very well
suited for this task. Our experiments have shown, however,
little difference in the resulting models, while computation-
ally QGB patches are simpler and more efficient.

4. Results

Our first model is a regular quadmesh in the shape of a torus,
see Figure 5. The result is far from a torus, but the isophote
lines flow smoothly on the surface.

The trebol object shown in Figure 4 is a commonly used
test model as it has vertices of valences 3, 4, 5 and 6. The
isophote lines indicate that the multi-sided patches are of
good quality and connect continuously, while the mean map
shows that edges tend to be a little flat.

The icosahedron model in Figure 6 is composed of tri-
angles. As a first step, a Catmull–Clark step is performed,
resulting in a quadmesh with 3-, 4- and 5-valent vertices.
The mean curvature map suggests larger values near 5-valent
vertices, but otherwise there are only small fluctuations, cor-
responding to the mesh edges.

Finally, Figures 7–8 show a more complex model† with
environment mapping, contouring and mean curvature.

† Taken from the code supplied to the paper on K-surfaces.2

Figure 5: Torus model (top: cage, bottom: isophote map).

Conclusion and future work

We have proposed a new construction for a piecewise para-
metric surface interpolating a mesh of arbitrary topology.
There are many avenues for further research. Currently our
method works only for closed meshes; it should be gener-
alized to meshes with boundary. Then continuous bound-
ary constraints (positional and cross-derivative interpola-
tion) may also be added. Extension with shape parameters
can also be considered. Better quality may be achieved if
normal vector interpolation is incorporated.
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Figure 6: Icosahedron model (from left to right: triangular cage, cage after subdivision, mean curvature map).

Figure 7: ‘Bob’ model (top: cage, bottom: contouring).
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