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Hungary

A R T I C L E I N F O

Article history:
Received July 29, 2025

Keywords: Multi-sided Surface, Curved
Domain, Medial Axis Transform, Gener-
alized B-spline, Interior Control

A B S T R A C T

Ribbon-based multi-sided parametric patches represent a special group of free-form
surfaces. While ribbons with boundary and cross-derivative constraints can sufficiently
define patches, modifying their interior – in addition – may be required, as well.

We introduce a new technique to add interior control structures for Generalized B-
spline (GBS) patches defined over multi-connected curved domains, where the sum
of the blending functions produces a weight deficiency. A local parameterization and
a parametric MAT (medial axis transform) structure is computed within the domain,
which leads to a family of quad structures, called templates. We define blend functions
by distributing weight deficiency amongst the vertices of the template and describe
algorithms to locate related control points in 3D, yielding Template GBS patches that
tightly approximate the input ribbons.

As a final step, a modified representation is created, called Hybrid GBS, that exactly
interpolates the given input ribbons and inherits the interior control structure of an ar-
bitrarily chosen Template GBS patch.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction

Quadrilateral surfaces, including tensor product Bézier and
B-spline surfaces, and Coons patches, play a dominant role in
computer aided geometric design. At the same time, there are
modeling tasks, such as hole filling, vertex blending or curve
network based design, where constructing and stitching quadri-
laterals is cumbersome and the use of n-sided patches (n , 4) is
preferred. The key issue is how to produce smooth shapes that
naturally connect given boundaries.

There is a rich variety of multi-sided patches – see the re-
cent survey [1] – where many representations and related topics
are discussed. In the current paper, we focus on ribbon-based
patches, where ribbon surfaces uniquely define the bound-
ary curves and the corresponding cross-derivatives. Similarly

∗Corresponding author:
e-mail: vaitkus@iit.bme.hu (Márton Vaitkus)

to quadrilateral Coons patches and their multi-sided general-
izations, such as Gregory [2], Salvi et al. [3], Várady et al.
[4], Vaitkus et al. [5], the interior of the patch is automatically
determined by the ribbons. This can be an advantage assum-
ing the resulting surface is satisfactory and no further modifi-
cation is needed, but it can be a disadvantage, when the geom-
etry of the interior needs to be edited in order to obtain better
shapes. For example, we may want to add some internal feature
or tweak the curvature distribution.

Our primary interest is to produce multi-sided patches over
curved domains. As discussed in former papers [6, 5], the
use of curved domains is indispensable for modeling com-
plex shapes with concave boundary segments and internal hole
loops. While for convex polygonal domains a variety of nat-
ural control point structures can be constructed (see for ex-
ample Loop and DeRose [7], Zheng and Ball [8], Krasauskas
[9], Goldman [10], Várady et al. [4]), it is a challenging prob-
lem to define an intuitive control structure for curved domains.

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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(a) 3D input ribbons (b) Parametric MAT in a curved domain (c) Depth-6 template

(d) Template GBS patch with interior control structure (e) Hybrid GBS patch with the original ribbons

Figure 1: Workflow to produce Template and Hybrid GBS patches.

A new kind of interior control structure was introduced in a
recent paper by Vaitkus et al. [11], where Template GB (Gener-
alized Bézier) patches are created combining Bézier ribbons. In
this work, we introduce Template GBS patches that build on cu-
bic B-spline ribbons, representing G1 boundary conditions. The
advantages of Generalized B-spline patches (see Vaitkus et al.
[5]) carry over to the current setting, such as the ability to in-
terpolate complex piecewise polynomial boundaries, and model
multiply connected surfaces bounded by periodic hole loops.

There are similarities between the techniques described in
this paper and those of Vaitkus et al. [11], so it is important
to identify our new contributions. Both schemes are defined
over a locally parameterized curved domain and a MAT (medial
axis transform) structure, but the template generation is funda-
mentally different. Template GB patches use only the topology
of the MAT diagram, while for Template GBS we need to ex-
tract geometric information from the template, as well. The
former template generation method had to be replaced by a new
approach, so that it can handle hole loops, as well. The tem-
plate structure can be edited before constructing the surface, so
a family of control point structures is defined. Although the con-
cept of distributing weight deficiency is similar to template GB
patches, the creation of the blend functions, using the parame-
terization of the domain is new. For Template GBS patches new
methods are introduced to position 3D control points, together
with local fairing operations. While Template GB patches ex-
actly reproduce the Bézier boundaries, Template GBS patches
can only approximate the B-spline boundaries. For this reason,
we introduce a modified representation – called Hybrid GBS –

that ensures exact interpolation and possesses an editable inte-
rior structure ‘borrowed’ from some Template GBS. The basic
workflow is demonstrated in Figure 1.

The paper is structured as follows. After reviewing re-
lated work in Section 2, we briefly revisit Generalized B-spline
patches and explain our basic concept in Section 3. Section 4
is devoted to the new template algorithm, while Section 5 deals
with the blending functions. In Section 6 we describe the initial
placement of 3D control points, then in Section 7 we explain
the hybrid representation. The ‘pros and cons’ of the concept
are discussed in Section 8, and several test examples are shown.

2. Previous work

In this section we briefly review weight-deficient surface for-
mulations and other relevant works.

2.1. Weight-deficient patches
Interpolant-based multi-sided patches generally take the

form

S∗(u, v) =
∑

i

Ii(u, v) ·Wi(u, v), (1)

where (u, v) are parameters in a domain Ω ⊂ R2, Ii : Ω → R3

are interpolant surfaces, and Wi : Ω → R are blending func-
tions [1]. The equation for control point based patches is very
similar (with Ci denoting the control points):

S∗(u, v) =
∑

i

Ci ·Wi(u, v). (2)
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In both cases, the blending functions can be weight-deficient—
they do not constitute a partition of unity (

∑
i Wi , 1), which

would be needed for affine invariance. There are two possible
remedies: normalization and adding extra terms, as shown be-
low.

S(u, v) =
1∑

i Wi(u, v)
S∗(u, v), [normalized]

(3)

S(u, v) = S∗(u, v) +

1 −∑
i

Wi(u, v)

A(u, v), [augmented]

(4)

where A(u, v) is an auxiliary surface. The latter solution makes
it possible to augment the surface with interior control, and this
is the path we have chosen in this paper.

There are several constructions of this type in the literature.
Várady et al. [12] proposed a variant of Kato’s interpolant-
based patch [13] to add auxiliary surfaces in the interior. Mar-
tin and Reif [14] employed a similar construction to create
exactly interpolating trimmed patches, using a control point
based (NURBS) patch as the auxiliary. The Midpoint [15] and
Generalized Bézier (GB) patches [4] are examples where the
auxiliary is a single point; the main surface being interpolant-
and control point based, respectively. In the case of Template
GB patches [11], both the exterior and interior surfaces are de-
fined by control points.

A somewhat different concept is the Hybrid patch suggested
by Salvi [16], where A is defined in such a way that its blend
sum matches the weight deficiency of S∗:

SHybrid(u, v) = S∗(u, v) + A(u, v). (5)

This can also be regarded as the distribution of weight defi-
ciency, a technique also found in the Zheng–Ball patch [8] and
variations of the GB patch [17].

2.2. Other relevant works

There exist various constructions that generalize B-spline
surfaces beyond regular tensor grids, but these have been gen-
erally limited to convex, polygonal domains or other spe-
cial configurations. Polyhedral splines, i.e., smoothly con-
nected piecewise-polynomials over polygonal meshes in par-
ticular have been extensively studied [18].

Recursive subdivision methods are defined for general topol-
ogy control polyhedra, and have been adapted to interpolate rib-
bon boundary conditions [19, 20], and to approximate trimmed
regions over curved domains [21]. Usually, both polyhedral
splines and subdivision are derived from uniform splines, and
while non-uniform extensions have been proposed [22, 23],
these often impose topological constraints on the control struc-
ture.

Methods such as hierarchical splines [24] and T-splines [25]
can introduce local details into regular control structures, but
need to handle irregular configurations via other means, and
the same holds for the non-uniform spline interpolation of An-
tonelli et al. [26].

Some constructions can handle arbitrary polygonal meshes,
e.g. by mapping a tensor-product basis function to each mesh
vertex [25, 27, 28], by solving an optimization problem [29],
or by generalizing the divided difference definition of B-
splines [30], but for these approaches – as well as the well-
known ‘meshless’ methods [31] – the handling of general
boundary conditions remains challenging.

The Generalized Bézier patch of Várady et al. [4] has been
successfully adapted to G2 B-spline boundary conditions by
Hettinga and Kosinka [32, 33], but this approach is also re-
stricted to uniform knots and convex polygonal domains. Our
approach is an extension of the Generalized B-spline (GBS) sur-
faces of Vaitkus et al. [5] which supports multiply-connected
curved domains and non-uniform spline ribbons. In this paper
we add interior control, as summarized in the next section.

3. Basic concept

Our goal is to create surfaces that behave like GBS patches
near their boundaries and have intuitive interior control.
First, we will briefly review the generalized B-spline (GBS)
patch (Section 3.1), then show a high-level overview on how
to create approximative Template GBS patches (Section 3.2).
The additional steps of creating the interpolating Hybrid GBS
patch are shown in Section 3.3.

3.1. The original GBS patch

The GBS patch [5] is an n-sided surface that interpolates po-
sitional and cross-derivative boundary constraints. The surface
is defined over a curved domain – a collection of 2D curves of
the same topology as the boundary curves. (For the generation
of curved domains see Appendix A.) The constraints are given
in the form of ribbons Ri, which are biparametric surfaces rep-
resented by a grid of control points:

Ri(si, hi) =
di∑
j=0

ei∑
k=0

Ci jk · N
Ξi
j (si)B

ei
k (hi), (6)

where Ci jk is a ribbon control point in the kth row and jth
column of ribbon i, NΞi

j (si) is the jth B-spline basis function
with knot vector Ξi, Bei

k (hi) is the kth, degree ei Bernstein poly-
nomial, and (si, hi) ∈ [0, 1]2 is a per-side parameterization
(see Fig. 2 and Appendix B). The boundary constraints are ex-
pressed as follows: the positions and cross-derivatives of the
GBS patch SGBS(u, v) at the ith boundary segment should match
those of Ri(si, hi). In this paper we deal with cubic B-splines
and linear cross-derivatives (ei = 1), i.e., G1 continuity.

The patch is constructed via the same control points as the
ribbons, but with different blends (γi jk(u, v), see Appendix C):

S∗GBS(u, v) =
n+NL∑
i=1

di∑
j=0

d⊥∑
k=0

Ci jk · γi jk(u, v). (7)

Here d⊥ is the polynomial cross-degree, and NL is the number
of interior loops: boundary curves i = 1 . . . n are clamped B-
splines, constituting the perimeter loop, while boundaries i =
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Figure 2: Constant side and distance parameter lines (s, h) for the purple side.

n+1 . . . n+NL are periodic and define interior holes. The blend
sum of this surface is thus

Γ(u, v) =
n+NL∑
i=1

di∑
j=0

d⊥∑
k=0

γi jk(u, v). (8)

Since generally Γ(u, v) , 1, the patch needs to be normal-
ized (cf. Eq. 3):

SGBS(u, v) =
1

Γ(u, v)
S∗GBS(u, v). (9)

In the rest of the paper, instead of normalization, we are going
to use the augmented construction of Eq. (4).

3.2. The Template GBS patch

For Template GBS patches we add interior control points
CInt
ℓ and associated blending functions γInt

ℓ to a ‘GBS-like’ ex-
terior defined by exterior control points ĈExt

i jk and associated
blending functions γ̂Ext

i jk , organized in the same side–column–
row structure as the ribbon control points Ci jk. (Such a control
point arrangement will be shown in Figure 8b.)

STGBS(u, v) =
n+NL∑
i=1

di∑
j=0

d⊥∑
k=0

ĈExt
i jk · γ̂

Ext
i jk (u, v)+

+
1 − Γ̂Ext(u, v)
ΓInt(u, v)

∑
ℓ

CInt
ℓ · γ

Int
ℓ (u, v). (10)

Here Γ̂Ext and ΓInt are the sums of the blends γ̂Ext
i jk and γInt

ℓ , re-
spectively.

The basic steps for creating this patch are summarized as fol-
lows (see details in later sections):

1. The input is given as control point based ribbons, defin-
ing positional and cross-derivative constraints along the
boundary. Based on this information, a curved domain is
generated, with local parameterizations for all sides.

2. The parameterizations induce a medial axis structure,
which, in turn, produces a quadrangulation of the domain
(the MAT template).

3. The template is simplified and/or refined (as needed); the
interior vertices of this structure (those not directly con-
nected to the edge of the template) will correspond to con-
trol points CInt

ℓ , while the rest will be related to the exterior
control points ĈExt

i jk .

4. Blending functions γ̂Ext
i jk and γInt

ℓ are assigned to the exte-
rior and interior control points based on natural per-side
blending functions.

5. The ribbons are approximated with knot vectors generated
from the template, defining the exterior control point posi-
tions ĈExt

i jk .

6. Interior control points CInt
ℓ are placed in 3D; the Template

GBS patch can now be evaluated.

3.3. The Hybrid GBS patch

Hybrid GBS patches are defined like Template GBS
patches (Eq. 10), but with different exterior control points and
associated blend functions, denoted without a hat (CExt

i jk and
γExt

i jk , respectively). These are determined by two additional
steps:

7. Exterior control points CExt
i jk of the Hybrid GBS patch are

defined by scaling the input ribbons.
8. GBS blends with template-based cross-degree, γExt

i jk , are as-
signed to the exterior control points; the Hybrid GBS patch
is now complete.

In Section 7.2 we will also show how to combine the internal
control structure with interpolant-based surfacing schemes (in-
stead of the GBS patch).

4. Template generation

In this section we describe the medial axis transform (MAT)
diagram and the related MAT-quad structure, then continue with
the template generation algorithm and demonstrate the variety
of template structures.

4.1. MAT-quads

The 2D MAT is a well-known structure [34] – it is a graph
within a domain whose edges represent the locus of points that
are equal distance from two boundaries, while its vertices repre-
sent points with equal distances from three or more boundaries.
These constitute the MAT skeleton. In the current context we
deal with a curved domain, and (following [11]) the distance
measure is not Euclidean, but parametric, i.e., it is computed
by the per-side distance parameters hi. The edges and vertices
of the parametric MAT determine where high weight deficiency
can be expected, and partition the domain according to the re-
gion of influence of each side. Similarly to the Euclidean set-
ting [35], the parametric MAT diagram also suggests a natural
quadrilateral decomposition called the MAT-quad structure: we
drop si constant isolines from the given MAT vertices and con-
nect edges to footpoints on the related boundaries. Due to the
numerical instabilities of the MAT calculation, the default struc-
ture is automatically pruned, by snapping edges with lengths
below a certain threshold.
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Figure 3: A MAT-quad diagram.

Figure 4: A MAT-quad diagram with a closed loop.

Examples of MAT-quad structures are shown in Figures 3
and 4. The edges of the MAT skeleton1 are colored blue, the
connecting edges are colored red. There are corner-quads (yel-
low) and side-quads (blue). The corner quads are bounded by
interior corner-edges (thin red) and two adjacent boundary seg-
ments, meeting at a common corner. The side-quads lie be-
tween a single boundary segment and a MAT-edge. There are
special side-edges (thick red) that occur between two adjacent
side-quads. These will play an important role, in particular at
closed loops, as they are always built into the template struc-
ture. Observe a single side-edge in Figure 3 and six side-edges
in Figure 4.

4.2. Templates
Templates are always derived by refining the initial MAT-

quad structure. A basic parameter of each template is its depth,
denoted by D, that determines the resolution of the subdivided
edges and faces. (It corresponds to the polynomial degree of
the transversal Bernstein polynomials d⊥.) Depth tells us how
many vertex layers occur as we move from the boundaries to
the MAT skeleton by the formula

L = D ÷ 2 + 1. (11)

Another set of parameters are internal MAT division numbers,
which are non-negative integers. By means of these each MAT-
edge can be further subdivided, as it will be discussed in the
next subsection.

Template generation is explained by a sequence of pictures
in Figure 5, where – for simplicity’s sake – there are no in-
ternal divisions on the edges of the MAT skeleton. First we

1Note that we use the term edge in a topological sense, even when referring
to curves or polylines.

(a) Depth 3

(b) Depth 4

(c) Depth 5

(d) Depth 6

Figure 5: Family of template structures based on the MAT in Fig. 3.
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consider even D-s, where the boundary segments and the con-
necting edges of the corner quads, and the side-edges are sub-
divided into L vertices. For D = 2→ L = 2 and the vertices are
at {0, 1}, i.e., there are no inner divisions (Fig. 3). For D = 4→
L = 3 and the vertices are at {0, 1

2 , 1}. For D = 6 → L = 4 at
{0, 1

3 ,
2
3 , 1}, and so on. The corner-quads will be subdivided into

L × L vertices, i.e., for D = 2 → 2 × 2, for D = 4 → 3 × 3,
D = 6 → 4 × 4 (marked with small circles). Vertices on the
side-edges are marked by small squares.

For odd D-s, vertices are placed in the [0, 1) intervals of the
related edges of the corner-quads. For D = 3 the number of
vertices equals to L = 2, placed at {0, 2

3 }. For D = 5 → L = 3
vertices are at {0, 2

5 ,
4
5 }, for D = 7 → L = 4 at {0, 2

7 ,
4
7 ,

6
7 } and

so on. This division is performed on the side-edges, as well.
Within the corner-quads L × L vertices will be computed. For
templates with odd depth we have found it useful to insert fur-
ther edges between the corner quads and the MAT side-edges,
see vertices marked with a small triangle.

Edges are subdivided uniformly by arc length, and internal
face vertices are computed using bilinear Coons interpolation
of the subdivided edges. Connecting the adjacent vertices is
straightforward, yielding the final template structure of small
quadrilateral faces. This process can easily be generalized for
higher depths, as well. Note that for odd D-s, the MAT skeleton
is not part of the template structure, but n-sided polygons are
formed instead. In our example five- and six-sided polygons
were obtained in the interior (see Figures 5a and 5c).

4.3. Editing templates

The template structure can be modified in various ways, if for
some reason the default configurations are not satisfactory. We
discuss two additional MAT editing techniques that we found
useful in practice: modifying the per-side parameterizations,
and refining the interior MAT edges. In our experience the
effect of these operations are fairly straightforward and pre-
dictable, and an acceptable template can be easily produced in
the vast majority of cases.

4.3.1. Modifying the parameterizations
First it should be observed that the hi parameterization de-

termines the region of influence of the individual ribbons, thus
by changing related boundary conditions one can modify the
MAT diagram and the corresponding MAT-quads. By default,
the boundary conditions of hi parameters increase from 0 to 1
linearly along the entire length of the i−1, i+1 boundary curves,
however optionally we may modify the length of these linear
segments, producing different hi parameterizations. In Figure 6
an example is shown, where the hi =

1
10 , . . . ,

4
10 isolines are dis-

played. Figure 6a shows a simple MAT graph using the default
h parameterization. In Figure 6b, some sides have been repa-
rameterized producing a branching MAT, and thus implying a
different MAT-quad structure.

4.3.2. Refining the MAT
The second editing technique concerns MAT division num-

bers that can be assigned to each individual edge of the MAT
skeleton. A division number zero means that the given edge is

(a) Simple graph

(b) Branching graph

Figure 6: Different MAT-quad diagrams defined by different parameterizations.

(a) Original sequence: 1, 1, 1, 1, 1, 1

(b) Modified sequence: 0, 2, 0, 1, 1, 1

Figure 7: Changing division numbers.
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not subdivided. This default setting may be overwritten (inde-
pendently for each template depth) and accordingly the number
of footpoints and the density of the related faces will change.
An example can be seen in Figure 7, where a multi-connected
model with D = 4 is shown. In Figure 7a each MAT-edge was
subdivided once, then in Figure 7b the configuration has been
modified by setting edges 1 and 3 to zero and edge 2 to two (see
edge numbering in Figure 4).

These examples show that by varying the initial MAT-graph
and/or refining the MAT-quad structure a family of different
templates can be produced.

5. Distributing weight deficiency

In this section we describe how blending functions are as-
signed to the interior vertices of the template. We adapt the
Bézier-based construction of [11] to handle (clamped or peri-
odic) B-spline boundaries with non-uniform knots. We con-
struct exterior and interior blend functions by naturally propa-
gating per-side basis functions towards the interior.

5.1. Per-side blending functions

For each side i of a template with depth D, there exist L layers
of vertices, each with a corresponding side-based longitudinal
index j ∈ [0, 1, . . . , di], and a layer index k ∈ [0, 1, . . . , L − 1] –
see two adjacent grids of vertices in Figure 8a. We define per-
side blending functions for each index tuple (i, j, k) similarly to
GBS patches:

σi jk(u, v) = µi jk(u, v) · NΘi
j (si(u, v))BD

j (ĥi(u, v)). (12)

where the longitudinal knot vector Θi, which is different from
that of the input ribbon, defines a cubic B-spline with di con-
trol points,2 µi jk is a rational weighting term (see Appendix C),
and ĥi is a modified h-parameter (described in Appendix D).
We would like to ensure that these blend functions take their
maximum in the vicinity of the corresponding template ver-
tex to avoid creating blends with multiple maxima when these
functions are combined – this motivates a careful choice of the
longitudinal knot vectors, as well as the modification of the h-
parameters.

5.1.1. Longitudinal knot vectors
We depart from the ‘topological’ construc-

tion of [11], by defining the knot vectors Θi =

[0, 0, 0, 0, θi,0, . . . , θi,di−4, 1, 1, 1, 1] based on the template
geometry. Assuming a sequence of template vertices
(vi,0, . . . , vi,di ) associated with side i and corresponding
s-parameters (si,0, . . . , si,di ), we set the (interior) knots as
θi, j = si, j+2. (Accordingly, the first and last two vertices are
skipped).

2We describe the non-periodic case. The periodic case can be handled anal-
ogously.

5.2. Exterior and interior blend functions

We present a color-coded arrangement of template vertices
that helps explaining how exterior and interior blend functions
are constructed from side-based blends. Due to the special
MAT-based structure of our templates, the vertices are arranged
into concentric layers and can be classified into exterior and in-
terior vertices, as illustrated on Figure 8b.

The first two layers correspond to exterior control points
(CPs) and define the boundary curves and cross-derivatives
(green and red). In the corners (red) these will be overlapping,
so control points (and blend functions) will be duplicated, each
copy corresponding to a different ribbon and blend function.
The exterior blend functions are simply the per-side blend func-
tions of the template:

γ̂Ext
i jk (u, v) = σi jk(u, v). (13)

The remaining vertices (yellow and blue) correspond to inte-
rior CPs. Given a template vertex ℓ, let us denote the collection
of index tuples with minimal layer index by I(ℓ) = {(i, j, k)},
(i.e., those with minimal ‘distance’ from the boundary). Inte-
rior blend functions are defined by averaging the corresponding
per-side functions:

γInt
ℓ (u, v) =

1
|I(ℓ)|

∑
(i, j,k)∈I(ℓ)

σi jk(u, v). (14)

Note that when per-side blends have little overlap, such aver-
aging might result in a multi-modal function – the previously
described longitudinal knot vectors and transversal reparame-
terizations were proven to be critical to mitigate this issue. Fig-
ure 9 shows the isolines of a blend function averaged from three
distinct sides.

Given these blending functions we can use normalized inte-
rior blends to distribute the weight deficiency generated by the
exterior blends, following Equation (10), defining the Template
GBS patch.

6. Positioning the control points in 3D

In the previous chapters we defined a template topology and
associated blending functions for interior control. In this sec-
tion, we discuss how to position the related control points in
3D. For this purpose, it would be natural to apply variational de-
sign, i.e., to optimize a functional that measures surface quality.
We mention two fundamental difficulties that arise in our con-
text: (i) representations over curved domains are based on local
parameters discretized over a mesh, making efficient gradient-
based optimization difficult, (ii) functionals based on curva-
ture or curvature variation lead to optimization problems that
are highly non-linear, ill-conditioned and sensitive to initial-
ization. With this in mind, we develop a set of heuristics that
provide a reasonable initial setting for the control points with
relatively little computational effort: one method based on con-
trol structure optimization (6.2), one based on approximating
a high-quality guiding surface (6.3), and finally a local fairing
method (6.4). All examples shown in this paper were created
using these techniques.
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(a) Per-side decompositions overlapping in a corner

(b) Exterior and interior vertices (blue and green regions)

Figure 8: Different decompositions of a MAT-based template.

6.1. Positioning exterior CPs by ribbon approximation
The CPs belonging to the outer two layers of the control

structure (ĈExt
i jk ) define the positions and cross-derivatives along

the patch boundaries. These control points are set by approxi-
mating the input ribbons with B-spline×Bernstein functions de-
termined by the template. We apply simple least-squares fitting
to samples of the curves and cross-derivative vector functions.
The resulting exterior CPs will be fixed during subsequent op-
timizations of the interior. In Section 8 we provide some nu-
merical data to evaluate the positional and angular accuracy of
ribbon approximations.

6.2. Positioning interior CPs by optimization
To find a natural initial placement for the control points, we

can employ Laplacian smoothing to the control structure, with-
out considering the underlying surface. We define a Laplacian
matrix L, which expresses each control point as a weighted lin-
ear combination of neighboring control points:

Li j =

−wi j for i , j,∑
k,i wik for i = j,

(15)

where wi j ∈ R is the weight of vertex j for vertex i. The con-
trol points are found by minimizing a quadratic form of (some
power of) the Laplacian:

min pT Lkp, (16)

or, equivalently, by solving a linear system

Lkp = 0, (17)

with the constraint that the vertices in the outermost two layers
are fixed as discussed previously. In practice, we recommend
using k = 3 (triharmonic smoothing).

In theory any graph or polygonal Laplacian matrix could be
used [36], but in our case the polygonal mesh is not a sam-
pling of an underlying surface, so we need to consider our
choice carefully. Practical experience shows that for good sur-
face shape the control structure should be positioned similarly
to the maxima of blend functions within the domain. Thus, we
construct the Laplacian by first repositioning each template ver-
tex within the domain to the maxima of the corresponding blend
function. For each vertex vi, we consider all vertices of adjacent
polygons, and compute its generalized barycentric coordinates
(λi1, . . . , λik) within the planar polygon formed by this 1-ring
neighborhood. Then, the Laplacian weights are simply set as
wi j = λi j. We use Mean Value Coordinates [37], as they are
well-defined for general non-convex polygons.

6.3. Positioning interior CPs by fitting a guiding surface
The previous method only considered the control structure,

while ignoring the shape of the underlying surface. As an alter-
native, we propose to approximate a high-quality guiding sur-
face. The approximation is done by simple least-squares fitting
on domain mesh vertices, using only interior blending functions
(with exterior CPs considered fixed). In theory any guiding sur-
face can be used that produces a triangle mesh with good shape.
One possibility is to approximate a polyharmonic surface [38]
determined by the same parametric domain and local parame-
terization – see Vaitkus [39] for details. Another possibility is
approximating a ribbon-based GBS patch [5]. We also add a
regularization term that penalizes CP displacements from the
positions determined by the optimization of the previous sec-
tion. The examples shown in the paper were created by fit-
ting a biharmonic surface (with fitting and regularization terms
weighted equally).

6.4. Repositioning CPs by local fairing
In our experience, using either optimization or guide fit-

ting, the manual tweaking of some control points might be rec-
ommended to even out the local curvature distribution. We
have developed a method to make our manual tweaking pro-
cess semi-automatic, as follows. Given a selected CP, we con-
sider the part of the domain corresponding to the 50th percentile
of the blending function – within this region, we evaluate a
curvature oscillation energy (the gradient-squared or cotangent
Laplacian of mean curvature) on the evaluated surface mesh
and search for a displacement of the control point that min-
imizes this energy in the vicinity of the current position. In
practice, a simple uniform grid search is carried out in the direc-
tion of the initial surface normal at the blend function maxima.
Of course, a more global fairing could further improve surface
quality – due to the aforementioned difficulties this is left for
future work.

7. Hybrid representations

At this point we have already developed a representation that
depends on the template, see Eq. (10). This, however, satisfies
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(a) Averaged blending function (b) Normalized blend (c) Contours mapped onto the surface

Figure 9: Interior blending function.

positional and cross-derivative constraints only in an approxi-
mate sense.

In this Section, we present hybrid representations that can ex-
actly reproduce the input ribbons. We describe a hybrid variant
of the template GBS patch, as well as a scheme that is applica-
ble to general interpolant-based surfaces.

7.1. Hybrid GBS
A key observation is that the exterior control points and blend

functions in the Template GBS formula (Eq. 10) can be replaced
with (rescaled versions of) input ribbon control points and GBS
blend functions (with modified cross-degree), and the result will
interpolate the input ribbons with G1 continuity. This means, in
essence, that we define CExt

i jk and γExt
i jk in the Hybrid GBS formula

SHGBS(u, v) =
n+NL∑
i=1

di∑
j=0

d⊥∑
k=0

CExt
i jk · γ

Ext
i jk (u, v)+

+
1 − ΓExt(u, v)
ΓInt(u, v)

∑
ℓ

CInt
ℓ · γ

Int
ℓ (u, v) (18)

as

CExt
i jk =

Ci jk for k = 0,
Ci j(k−1) +

3
d⊥ (Ci jk − Ci j(k−1)) for k = 1,

(19)

γExt
i jk (u, v) = µi jk(u, v) · NΞi

j (si(u, v))Bd⊥
k (hi(u, v)), (20)

with Ξi being the input knot vectors and d⊥ = D. Note that
the weight deficiency generated by these input-based blends is
equal to the weight deficiency of the exterior template blends,
because the µi jk terms are defined by inserting knots into a com-
mon cubic Bézier ‘base’, preserving the weight sum (see Ap-
pendix C). As a consequence, the interior blend functions of
Template GBS and Hybrid GBS patches are identical and only
the ribbons will differ. In our experience enforcing exact rib-
bon interpolation often has near-imperceptible effect on surface
shape in terms of curvature or reflection line distribution. Fig-
ure 10 shows a multiply connected example.

7.2. Interpolant-based surfaces with interior control
Our approach for introducing interior control is generally ap-

plicable, to not only control point based formulations such as

(a) Template GBS patch

(b) Hybrid GBS patch

Figure 10: Replacing exterior layers with the original ribbons.
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GBS patches, but also to surfaces defined by weighted inter-
polants as in Eq. (1). In particular, we can construct the follow-
ing interpolant-based generalization of our scheme:

SIB(u, v) =
n∑

i=1

Ii(u, v) ·Wi(u, v)+

+
1 −
∑

j W j(u, v)
ΓInt(u, v)

∑
ℓ

CInt
ℓ · γ

Int
ℓ (u, v), (21)

where Ii are surface interpolants and Wi are weight functions
generating a weight deficiency. Some interpolant-based con-
structions, such as the Midpoint patches of Salvi et al. [15] are
naturally weight deficient, so the above formula directly ap-
plies to them. However, other methods, including the inverse
distance construction of Kato [13], or the popular corner-based
patch of Charrot and Gregory [40] employ normalized blending
functions, and are thus not weight deficient. In the spirit of pre-
vious works [12, 14], we can introduce an artificial weight defi-
ciency by introducing an additional term such as W = 1−

∏
i h2

i
into each of the weight functions, which will also be equal to
the weight deficiency.

8. Discussion

We believe that the parametric MAT-quad structure produces
a natural partitioning for curved domains. It does work for com-
plex surfaces, as well, as can be seen in the figures throughout
the paper. It is also an attractive feature that the MAT-skeleton
can be locally refined, thus the template will have more degrees
of freedom where it is required. Figure 11 is an example where
a D4 structure and its refined variant can be seen.

In our experience the blend functions in the interior are suit-
able for local editing. Our examples in Figures 12 and 13 show
that lifting one or two control points yield local changes in the
surface interior. The effect of relocation gets weaker as we
move inwards, i.e., the yellow control points near the perimeter
loop are stronger, while the blue ones are weaker.

It is a well-known property of transfinite patches, that if the
ribbons are relatively narrow, then the patch interior may be-
come somewhat flat. (See techniques to enhance the shape by
ribbon- and central control points in [5].) This phenomenon can
be noticed at highly curved objects, though it is less noticable
for objects with hole loops, where the hole loops themselves
provide sufficient geometric information for the interior. The
GBS surface in Figure 14a is somewhat flat; we add an interior
control structure, and the Template GBS yields a better shape
(b), then it can be further improved by manual editing (c). An-
other example shown in Figure 15, where the isophotes of the
double setback vertex blend improve after some manual tweak-
ing. Finally, a plastic bottle surface is shown (Fig. 16), where
after editing the interior control points a Hybrid GBS surface
with good isophotes was obtained – note that the surface is per-
pendicular to the horizontal symmetry plane and thus can be
smoothly joined with its other half.

In general, we have found that interior control structures with
D = 4, 5, 6 are suitable for manual editing, but for higher depths

Fig. D Posavg Posmax Angleavg Anglemax
1d 4 0.014 0.128 0.037 0.726

5 0.022 0.269 0.026 0.268
6 0.005 0.072 0.011 0.147

13b 4 0.022 0.186 0.063 0.729
5 0.024 0.179 0.06 0.638
6 0.021 0.178 0.029 0.386

11b 4 0.014 0.074 0.168 2.683
5 0.008 0.056 0.075 0.647
6 0.004 0.033 0.039 0.419

Table 1: Approximation errors of the models in Figs. 1d, 13b and 11b. Posi-
tional deviations are given as percentages of the bounding box diagonal, while
normal vector deviations are in degrees.

we need to rely on the automatic procedures, such as optimiza-
tion and fitting (see Section 6). The key in this project is the
definition of blending functions. We have experimented with
other alternatives, including uniform knots combined with vari-
ous reparameterization schemes for the s-coordinates, as well as
interpreting boundary vertices as Greville abscissae, and found
that currently our described approach in Section 5 is the best
choice in practice. At the same time, we believe other blends
might also be suitable; for example, blends using mapped B-
splines [28] or biharmonic weights [29].

Next we show positional and angular deviations between the
input ribbons and the approximate ribbons of some Template
GBS test models. We have varied the depth values (D = 4, 5, 6)
for three different example surfaces – see Table 1. As expected,
higher depth yields more degrees of freedom, and thus gen-
erally better approximations. (The approximation error might
increase when going from even to odd depths, due to the non-
nested knot vectors.)

The use of Template GBS vs. Hybrid GBS depends on the
application. The approximating Template GBS patches may
represent an acceptable alternative when exact interpolation is
not crucial, otherwise the use of Hybrid GBS patches is recom-
mended.

Note that Template and Hybrid GBS patches cannot be ex-
actly represented in NURBS format due to the use of harmonic
parameterizations. Nevertheless, they can be tightly approxi-
mated using a collection of quadrilateral patches and the para-
metric MAT structure suggests a natural decomposition.

Conclusion

We have presented an approach to define interior control
structures for Generalized B-spline patches; the scheme can be
extended to arbitrary ribbon based surfaces, as well. The struc-
ture is built on configurable templates, constructed in the do-
main space by means of parametric MAT-diagrams. A set of
blend functions are assigned to the template vertices, then re-
lated control points are placed in 3D either by optimization, fit-
ting or manual editing. We have pointed out the importance of
the blending functions; finding alternative solutions and further
utilization of the MAT structure is subject of ongoing research.
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(a) Template (b) Template GBS (c) Template GBS refined

Figure 11: Interior controls in a complex configuration.

(a) GBS patch (b) Template GBS patch (c) After editing

Figure 12: Creating and editing a test model.

(a) GBS patch (b) Template GBS patch (c) After editing

Figure 13: Editing the ‘V-shape’ model.

(a) GBS patch (b) Template GBS patch (c) After editing

Figure 14: Editing the ‘helmet’ model.
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(a) GBS patch (b) Template GBS patch

Figure 15: Enhancing isophote lines by CP modification.

(a) Control structure (b) Hybrid GBS patch with isophotes

Figure 16: Test object with a hole loop.
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Appendix A. Curved domain generation

Here we only give a high-level description of the domain gen-
eration method – the reader should consult Vaitkus et al. [5] for
more details. The domain is created from the boundary curves.
First let us assume that there are no interior loops. The perime-
ter boundary curves are discretized, and the polylines are devel-
oped into the plane by placing the segments one by one while
retaining the angle at the vertices. This will result in an open
polygon, which is subsequently closed by distributing the devi-
ation vector between the first and last points.

When the input is multiply connected, first we create a GBS
patch without holes, and project the curves onto the surface to
obtain interior loops in the domain.

Appendix B. Per-side parameterizations

Local parameters are computed by minimizing Dirichlet en-
ergy

∫
|∇ f |2 dA over the domain. The boundary values are set

as follows:

• The side parameter associated with the ith side, si, is con-
stant 0 on the i − 1st side, increases according to the knot
vector Ξi from 0 to 1 on the ith side, and it is constant 1
on the i + 1st side. (It is unspecified on other parts of the
boundary.)

• The distance parameter associated with the ith side, hi, is
constant 0 on the ith side, increases from 0 to 1 on the
adjacent sides, and it is constant 1 on all other sides.

In the presence of periodic interior loops, side parameters need
some extra care as the function values may jump at the cut line;
see details in the original paper [5].

Appendix C. GBS blending function

The blending function γi jk is defined as

γi jk(u, v) = µi
j(hi− , hi, hi+ ) · N

Ξi
j (si)Bd⊥

k (hi). (C.1)

It is composed – similarly to the blends of the ribbons – of B-
spline and Bernstein basis functions, and a rational weight µi

j
that ensures the interpolation property. The notations i− and i+

are defined to facilitate circular indexing for the perimeter loop:

i− =


n for i = 1,
i − 1 for i ≤ n,
i otherwise.

i+ =


i + 1 for i < n,
1 for i = n,
i otherwise.

(C.2)

The weight function µi
j is constant 1 for all periodic ribbons.

For the outer loop, its value can be computed by the following
simple steps (corresponding to its Bézier counterpart in [6]):

1. Define quadratic rational quantities similar to Gregory’s
twist [41]:

α =
h2

i−

h2
i− + h2

i

, β =
h2

i+

h2
i+ + h2

i

. (C.3)

2. Create a 1D cubic clamped B-spline curve of one segment
with initial control points {Cµi

j } = [α, α, β, β].
3. Insert the interior knots of Ξi, thereby changing {Cµi

j }.
Then µi

j(hi− , hi, hi+ ) = Cµi
j .

This process guarantees that the weight deficiency is the same
regardless of the actual knot structure.

Appendix D. Transversal reparameterization

When defining per-side blending functions, we apply a repa-
rameterization to the h-coordinate to shift the maximum of the
transversal Bernstein functions towards the corresponding tem-
plate vertex. More concretely, if the value of the hi-coordinate
at the vertex should be shifted to ĥi,D(p) = k

D (the maxima of the
Bernstein polynomial BD

k ), then we define a (vertex-dependent)
quadratic reparameterization

ĥi,D(p) = c1(v) · B2
1(hi) + B2

2(hi), (D.1)

where B2
i are quadratic Bernstein polynomials, and

c1(v) = max

0,min

 ĥi,D(p) − B2
2(hi)

B2
1(hi(p))

, 1

 . (D.2)

Note that the reparameterization remains monotonic only when
1
2 ĥi,D(p) ≤ h(p) ≤

√
ĥi,D(p) holds.
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