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Abstract
Transfinite patches provide a simple and elegant solution to the problem of representing non-four-sided continuous
surfaces, which are useful in a variety of applications, such as curve network based design. Real-time responsive-
ness is essential in this context, and thus reducing the computation cost is an important concern. The Midpoint
Coons (MC) patch presented in this paper is a fusion of two previous transfinite schemes, combining the speed of
one with the superior control mechanism of the other. This is achieved using a new constrained parameterization
based on generalized barycentric coordinates and transfinite blending functions.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—curve, surface, solid, and object representations

1. Introduction

The representation of multi-sided surfaces is a difficult prob-
lem, with different solutions suited to different applications.
Most CAD systems provide trimmed tensor product sur-
faces to reproduce patches of arbitrary sides in a mechani-
cal model, while in computer graphics subdivision surfaces
are the de facto standard. Splitting multi-sided regions into
quadrilateral patches—preserving continuity along splitting
curves—is also a well-researched approach.

Transfinite interpolation has many advantages over the
above methods: (i) it retains the continuity of its edge curves
on the whole domain, while exactly interpolates G1 bound-
ary conditions; (ii) it depends only on the boundary data,
without the need of additional control points or polyhedra;
(iii) smooth connections to adjacent surfaces are easily en-
sured.

There are also some limitations: (i) as the whole patch
is being defined as a blend of its boundaries, there is little
control over the center of the surface; (ii) computation costs
are somewhat higher compared to conventional techniques;
(iii) the computation of derivatives is complex (normally dis-
crete approximations are used).

One of these concerns, central control, has been alleviated
recently by the addition of an extra degree of freedom (ad-
justing surface fullness) to the Gregory patch,3 the most pop-

ular choice of multi-sided transfinite patch.6 As for compu-
tational complexity, a practically equivalent, but much more
efficient formulation has been given for the same surface.7, 5

These two modifications of the Gregory patch are, however,
not compatible. The problem lies in the parameterization of
the domain, which is enhanced in this paper in such a way
as to accommodate for both adjustments, and thus create an
efficient representation capable of fullness control.

The rest of the paper is organized as follows. In Section 2
we give a short review of related research. In Section 3 the
necessary details of the above two transfinite surfaces are
presented. The new Midpoint Coons (MC) patch is intro-
duced in Section 4, and test results are shown in Section 5.

2. Previous work

There has not been much work done on the interior control of
transfinite interpolation surfaces, maybe because these were
regarded as the means of filling multi-sided holes, not as a
design tool. One exception is an earlier work of the authors,8
where the patch center can be adjusted via auxiliary surfaces.
The formulation is a modification of Kato’s patch.4

As briefly outlined above, this paper mainly draws on two
previous representations: the Generalized Coons (GC) and
Midpoint (MP) surfaces.7, 6 The former is a multi-sided gen-
eralization of the Coons patch, which is shown to be virtually
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Figure 1: Side- and corner-based transfinite surface interpolation. Side interpolants (top) are parameterized by a side- and a
distance parameter, while corner interpolants (bottom) use only side parameters. A point in the polygonal domain (left) is
mapped to the four-sided domain of each of its ribbons (middle), which are evaluated in 3D space (right) and then blended
together, giving a point of the transfinite patch.

the same as the Gregory patch,5 while the latter introduces
a central control point for fullness control. Both of these are
presented in detail in Section 3.

Our primary contribution, the constrained parameteriza-
tion in Section 4.1, is based on generalized barycentric co-
ordinates (see e.g. Floater1) and the blending function of
Kato’s patch.4

3. Preliminaries

In this section we will first look at the various constituents of
transfinite patches, then review some concrete constructions:
the Gregory patch, and its two enhancements, the General-
ized Coons (GC) and Midpoint (MP) patches.

Given a loop of 3D curves and cross-derivatives, we want
to generate a surface that interpolates these boundary con-
ditions (in a G1 sense, i.e., only tangent planes are repro-
duced). Cross-derivatives can be defined automatically using
a frame sweep (e.g. with a rotation-minimizing frame9), or
semi-automatically by first fixing normal vectors at arbitrary
points. We assume that the cross-derivative functions are
twist-compatible; otherwise rational twists can be applied.2

Transfinite surfaces come in two flavors: side-based and
corner-based schemes, see Figure 1. Side-based schemes
blend together side-interpolants (four-sided surfaces that in-
terpolate one side), while corner-based schemes use corner-
interpolants (four-sided surfaces that interpolate two adja-
cent sides). In practice it is much easier to construct side-

interpolants, so we will define corner-interpolants based on
these, as well.

A side-interpolant, or ribbon, for side i is defined as

Ri(si,di) = Pi(si)+ γ(di)Ti(si), (1)

where Pi(si) is the i-th boundary curve parameterized in
[0,1], Ti is the corresponding cross-derivative, and γ is a scal-
ing function. (A recommended γ function is γ(d) = d/(2d+
1), its derivation can be found in Salvi et al.7) The arguments
si and di are the side- and distance-parameters, with

si ∈ [0,1], di ≥ 0. (2)

The n-sided patch itself is defined over a convex polygo-
nal domain, e.g. a regular n-sided polygon in the (u,v) plane.
A crucial component of a transfinite scheme is the parameter
mapping from (u,v) to (si,di), i.e., from the n-sided polygon
to each ribbon’s own parameterization. A basic constraint is
that for a point on side i of the domain polygon,

si−1 = 1, si+1 = 0, di = 0. (3)

Also, the side parameter si changes linearly from 0 to 1, and
the distance parameter di grows monotonically as we go in-
side the domain.

Finally, we will need suitable blending functions that in-
terpolate the ribbons at the boundaries, but blend them to-
gether inside the patch.
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3.1. Gregory patch

The classic Gregory patch is a corner-based† scheme, so our
first step is the creation of corner interpolants. These can
be constructed as the Boolean sum of two adjacent ribbons,
with the common part subtracted:

Ii,i−1(u,v) = Ri−1(si−1,si)+Ri(si,1− si−1)

−Qi,i−1(si,si−1), (4)

where the Qi,i−1 correction patch is defined as

Qi,i−1(si,si−1) = Pi(0)+ γ(1− si−1)Ti(0)+ γ(si)Ti−1(1)

+ γ(si)γ(1− si−1)Wi,i−1. (5)

Here Wi,i−1 is the (common) twist for the corner (i, i−1).

The patch equation is simply

SCB(u,v) =
n

∑
i=1

Ii,i−1(u,v)Bi,i−1(u,v), (6)

where Bi,i−1 is the blending function

Bi,i−1(u,v) =
Di,i−1

∑
n
j=1 D j, j−1

=
1/(didi−1)

2

∑
n
j=1 1/(d jd j−1)2 (7)

with Di,i−1 = ∏k /∈{i,i−1} d2
k .

For parameterization, radial side parameters and perpen-
dicular distance parameters are used. As these are not rele-
vant to the enhancements at hand, the reader is referred to
the original paper.3

3.2. Generalized Coons patch

This is a side-based formulation, similar in logic to the orig-
inal four-sided Coons patch:

SGC(u,v) =
n

∑
i=1

Ri(si,di)Bi(u,v)

−
n

∑
i=1

Qi,i−1(si,si−1)Bi,i−1(u,v). (8)

Here Bi(u,v) = Bi,i−1(u,v)+Bi+1,i(u,v) is a blending func-
tion assigned to the i-th side; everything else is as before.

There are, however, more constraints on the parameters.
For a point on the i-th side:

di−1 = si, di+1 = 1− si, (9)

d′i−1 = s′i , d′i+1 =−s′i , (10)

where the prime symbol means all directional derivatives.
These are satisfied by a blended construction—details can
be found in the original paper.7

Because of this constrained parameterization, there are
less ribbon evaluations, and thus the computational cost of
this surface is about 25% less than that of the Gregory patch,
while there is no noticeable change in the surface.5

† Because of this, it is also called “CB patch”.7

3.3. Midpoint patch

Here a new degree of freedom was added to the Gregory
patch, in form of a central control point P0:

SMP(u,v) =
n

∑
i=1

Ii,i−1(u,v)B
∗
i,i−1(u,v)+P0B∗0 (u,v). (11)

The modified blending functions are defined as

B∗i,i−1(u,v) =
diH(1− si−1)H(di−1)+di−1H(si)H(di)

di +di−1
,

B∗0 (u,v) = 1−
n

∑
i=1

B∗i,i−1(u,v), (12)

where H(x) is a Hermite blend

H(x) = (1− x)3 +3(1− x)2x. (13)

Note that by definition ∑
n
i=1 B∗i,i−1(u,v)+B∗0 (u,v) = 1.

The control point P0 has the default location

P0 =
1
n

n

∑
i=1

Ii,i−1(0.5,0.5), (14)

but it can be used to move the center of the surface.

In this scheme we also have a new constraint on the pa-
rameterization. For points on side i, it should satisfy

d j = 1. j /∈ {i−1, i, i+1} (15)

This can be achieved using generalized barycentric coordi-
nates. Let us look at this in detail, as this will be the base of
our new parameterization in Section 4.1.

3.4. Barycentric parameterization

Given a convex polygon with vertices Vi, the Wachspress co-
ordinates {λi} of a point (u,v) have the following properties:

n

∑
i=1

λi(u,v) = 1, λi(V j) = δi j, (16)

and λi decreases linearly on the adjacent domain edges. Now
we can define side and distance parameters as

si = λi/(λi−1 +λi) , di = 1−λi−1−λi. (17)

It is easy to see that this construction satisfies all require-
ments. An example is shown in Figure 2a.

4. Midpoint Coons patches

We would like to combine the GC and MP patches, so that
we have a computationally efficient transfinite patch with
fullness control. The idea is simple: use the modified blend-
ing functions B∗i,i−1 in the GC scheme:

SMC(u,v) =
n

∑
i=1

Ri(si,di)
[
B∗i,i−1(u,v)+B∗i+1,i(u,v)

]
−

n

∑
i=1

Qi,i−1(si,si−1)B
∗
i,i−1(u,v). (18)
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(a) Barycentric parameterization

(b) Constrained barycentric parameterization

Figure 2: Constant parameter lines in a 6-sided domain. Side
parameters of the bottom side (green), and distance parame-
ters of the left and right sides (blue and red) are shown.

Unfortunately this is not enough. The problem is in the pa-
rameterization: it has to satisfy both Eqs. (9)–(10) and (15),
which none of the original formulations were capable of.

4.1. Constrained barycentric parameterization

The barycentric parameters described in Section 3.4 already
satisfy every constraint except Eq. (10). This is evident in
Figure 2a, as the blue and red constant parameter lines do
not have the same tangent as the green ones near the bottom.

Looking at this figure, we can see that what we need is
a new distance parameter d̂i that “behaves” as si−1 when
si = 0, and as si+1 when si = 1; but we want to retain the
original di for di = 0 and di = 1 (i.e., at the base side and at
non-adjacent sides).

Note that this is a very similar problem to transfinite
surfaces—we have four one-dimensional boundary con-
straints to be interpolated, while for points inside the domain

blended values are needed. Indeed, it can be solved using the
blending functions of Kato’s patch.4

Let the values at the boundaries be

x1 = di, x2 = si+1, x3 = d, x4 = 1− si−1, (19)

and the parameters in the corresponding square domain be

t1 = di, t2 = 1− si, t3 = 1−di, t4 = si. (20)

Then the new distance parameter is defined as

d̂i =
4

∑
j=1

x jB̂ j(u,v), (21)

where

B̂ j(u,v) =
∏l 6= j t2

l

∑
4
k=1 ∏l 6=k t2

l

=
1/t2

j

∑
4
k=1 1/t2

k

. (22)

Note that this function is singular when ti = t j = 0, i 6= j.
This does not present a problem, as the parameterization is
well-defined in these points.

This d̂i, combined with the original side parameter si,
gives a parameterization that satisfies all constraints. Fig-
ure 2b shows the parameterization in a 6-sided domain.

5. Test results

As expected, the new MC patch shows an average of 30%
speedup compared to the MP patch, see Table 1.

Figure 3 shows the deviation between an MP and an MC
patch. The maximum deviation is ≈ 0.4% of the bounding
box axis, with an average deviation of ≈ 0.1%. (These val-
ues are even tighter, if the MP patch uses the same con-
strained parameterization.) The two patches are visually in-
distinguishable.

In Figure 4 we can see how the central control point af-
fects the shape of the surface. This change has no effect on
the G1 interpolation properties, as can be seen from the con-
tourings.

Figure 3: Deviations between 5-sided MP and MC patches.
Full red color means 0.5% of the bounding box axis. The
green region has deviation less than 0.2%.
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n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

CB 429ms 316ms 652ms 760ms 887ms 968ms

GC 321ms 276ms 466ms 536ms 616ms 673ms

MP 419ms 341ms 638ms 752ms 868ms 953ms

MC 299ms 277ms 441ms 518ms 578ms 636ms

Speedup 28.6% 18.8% 30.9% 31.1% 33.4% 33.3%

Table 1: Evaluation speed of different surface representations on a 2.8GHz machine, with a resolution of ca. 10000 triangles,
showing the speedup between MP and MC patches.

Conclusion

We have successfully combined two transfinite surface rep-
resentations into a new one that takes the best of both worlds:
fast evaluation and the ability to control the surface interior.

(a) Mean curvature map

(b) Contouring

Figure 4: Changing the fullness of a patch. The central con-
trol point is shown by a small cube.

Future work includes optimization with the GPU and the de-
velopment of efficient derivative computation.
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