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Abstract
Multi-sided surfaces are important in several areas of Computer-Aided Geometric Design, including curve net-
work based design, approximation of triangular meshes, hole filling, and so on. In the majority of surface repre-
sentations, the boundary constraints entirely determine the interior of these patches, however, frequently there is
a need to have additional design freedom for shaping the surface. In this paper, we investigate new multi-sided
surfaces, where such interior control is possible. As a reference, we take a recent variant of the Gregory patch,8

and compare it with two new representations: (i) a transfinite patch defined by boundary ribbons (curves and
cross-derivatives) and a single surface point to set in the middle, and (ii) a recently published, new n-sided Bézier
patch,10 defined by a grid of control points. We will discuss the different degrees of freedom for shape adjustment,
and illustrate our results by a few examples showing mesh approximation quality.

1. Introduction

The majority of free-form models in Computer Aided Geo-
metric Design is almost exclusively represented by quadri-
lateral surfaces, however there is a definite demand in the
CAD industry for using multi-sided patches within struc-
tures of general topology (arbitrary number of sides, arbi-
trary vertex valency, T-nodes, etc.). There are several well-
known approaches to overcome this problem, such as sur-
face trimming, internal splitting into quadrilateral patches,
or subdivision. Our current interest is to investigate genuine
n-sided patches, where artificial intricacies coming from the
tensor product schemes are avoided and natural structures
can be created for shape design and/or reproduction. Here
we will deal with two different approaches used for multi-
sided patches: transfinite surfaces and control point based
patches.

The main advantage of transfinite surfaces is that they
are fundamentally determined by their boundaries, and these
boundaries may be represented by parametric curves of any
form. In most cases, the patches are defined not only by posi-
tional constraints, but also by ribbon surfaces—interpolants
that carry cross-derivative constraints. This facilitates the
smooth connection of adjacent patches. In the majority of
transfinite schemes, the interpolation of the ribbons deter-
mines the entire patch, and there is only a limited control
to modify the interior by means of setting the magnitude of

cross-derivatives. The default patch, or even the optimized
shape may not be sufficiently good, and further fullness con-
trol is often required for free-form design or shape approx-
imation. In Section 4 we will look at a conventional trans-
finite representation, the corner-based (CB) patch, a vari-
ant of Gregory’s scheme, as was proposed by Salvi et al.8
In Section 5 we introduce a new transfinite representation,
the midpoint (MP) patch, where in addition to the ribbons,
the middle point of the surface can also be edited. The ad-
vantages of this surface formulation will be shown and its
interpolation property will also be proven.

Control point based multi-sided patches are defined by a
special grid structure. The boundaries must be defined by
standard control point based curves, such as Bézier or B-
spline curves, and the cross-derivatives are determined by
the first two rows of control points of the multi-sided grid.
In this case we have a somewhat reversed situation, as we
can have a sufficiently large number of control points over
the interior, however, it is far from obvious how to adjust
the interior control points when the boundaries are modi-
fied. A recently published, novel n-sided patch,10 that gen-
eralizes quadrilateral Bézier surfaces, overcomes this prob-
lem. Interior control points can be edited when needed, or
derived automatically from the boundary control points, as
well, using a special degree elevation/reduction algorithm.
An additional center control point is available for adjusting
the middle point of the patch (see Section 6).



P. Salvi, T. Várady / Multi-sided Surfaces with Fullness Control

In Section 7, we compare the above representations
through shape approximation examples.

2. Previous Work

There is an extensive research on transfinite surface interpo-
lation, see e.g. our review paper.9 More recent developments
include the generalized Coons patch8 and an extension of the
Gregory patch with G2-continuous boundaries.7 The repre-
sentation introduced in this paper is based on the corner-
based (CB) Gregory patch in Salvi et al.8

Várady et al.11 presents another transfinite construction
that has control over the interior of the surface. It is based
on a patch originally proposed by Kato,5 and referred to as
side-based (SB) patch in Salvi et al.8 Its blending functions
are extended to incorporate a new middle surface interpolant.
This can also be applied to CB patches. The blending func-
tions we are going to introduce here have different proper-
ties, see details in Section 5.

There are several control network based multi-sided patch
formulations. Hosaka and Kimura4 published quadratic and
cubic n-patches, which were later extended to boundaries of
arbitrary degrees by Zheng and Ball.12, 1 These, however, use
high-degree expressions, and are limited to 3–6 sides.

Another early result is the S-patch,6 which generalizes
Bézier surfaces to n sides, using multinomials and a convex
polygonal domain. Unfortunately, its manual modification is
quite difficult, due to the high number of control points and
their complex topology.

In a recent paper, we have presented a different multi-
sided generalization of the Bézier surface,10 and an algo-
rithm that merges Bézier patches of different degrees into
a single multi-sided surface in a natural way. This patch rep-
resentation will be reviewed in Section 6.

3. Transfinite Surface Interpolation

In the following two sections, we will describe two trans-
finite surface representations. Since the midpoint patch is
a modification of the corner-based patch, the two are very
similar. This section reviews the basic construction of these
surfaces along the lines of Salvi et al.7

Both patches are defined over an n-sided regular polygon
in the (u,v) plane, interpolating linear ribbon surfaces asso-
ciated with the sides of the polygon. For each side Γi, we de-
fine local parameters si = si(u,v) and hi = hi(u,v). The side
parameter si varies linearly on Γi between 0 and 1, while the
distance parameter hi vanishes on Γi and increases mono-
tonically within the domain, as we move away from Γi. The
ribbons are defined as

Ri(si,hi) = Pi(si)+wihiTi(si), (1)

where Pi(si) defines the i-th boundary curve, Ti(si) is the

related cross-derivative, and wi denotes a scalar multiplier
that controls the magnitude of the ribbon.

Both schemes are based on corner interpolant surfaces
Ii,i−1, that interpolate the (i−1)-th and i-th ribbons both po-
sitionally and in a derivative sense. (Sides are indexed cycli-
cally, with 1 coming after n.) Using the local side parameters

Ii,i−1(u,v) = Ri−1(si−1,si)+Ri(si,1− si−1)−
Qi,i−1(si,si−1). (2)

The correction term Qi,i−1 is needed to ensure the reproduc-
tion of the two ribbons at the boundary:

Qi,i−1(si,si−1) = Pi(0)+ siTi−1(1)+(1− si−1)Ti(0)+

(1− si−1)siWi,i−1, (3)

where Wi,i−1 denotes the mixed partial derivative at corner
(i− 1, i). (We assume compatible twists, otherwise rational
terms can be used.)

In the final surface equations the corner interpolants are
multiplied by special blending functions, that maintain the
interpolation properties and eliminate the contribution of the
corner interpolants associated with other sides. The equation
of the CB patch is given as

SCB(u,v) =
n

∑
i=1

Ii,i−1(u,v)Bi,i−1(u,v), (4)

while the equation of the MP patch is

SMP(u,v) =
n

∑
i=1

Ii,i−1(u,v)B
RH
i,i−1(u,v)+P0BRH

0 (u,v). (5)

Although the same sort of corner interpolants Ii,i−1 are
used, these are multiplied by different blending functions
(Bi,i−1 and BRH

i,i−1, respectively), and there is also an ex-
tra term for the midpoint patch. In the following sections
we will discuss how the patches and blending functions are
constructed, and explain why different surface characteris-
tics are obtained.

4. The Corner-based (CB) Patch

The CB patch is an extended variant of the classical Gregory
patch,2 as was recently presented in the papers by Salvi et
al.8, 7 In order to make the CB patch definition complete, we
need to parameterize the domain and define blending func-
tions. We revisit the well-known radial sweepline method to
determine the si(u,v) and hi(u,v) parameters. Take a domain
point (u,v), and connect it with a line to the intersection
point of the extended polygon sides Γi−1 and Γi+1. This line
intersects Γi at point Q, and defines a ratio in [0,1], that is
equal to si, see Figure 1. The distance parameter hi is gener-
ally defined as ‖(u,v)−Q‖, however, other measures, such
as the perpendicular distance to Γi can also be used.

The corner interpolants are determined by the side pa-
rameters; the blending functions are defined as a function



P. Salvi, T. Várady / Multi-sided Surfaces with Fullness Control

(u,v)

si

Q

Γi

Figure 1: Construction of the radial parameterization.

of the distance parameters hi(u,v). Introducing the notation
Di,i−1 = ∏k /∈{i,i−1} h2

k , the blending functions are defined
as

Bi,i−1(u,v) =
Di,i−1

∑
n
j=1 D j, j−1

=
1/(hihi−1)

2

∑
n
j=1 1/(h jh j−1)2 . (6)

Clearly ∑i Bi,i−1(u,v) = 1 for each (u,v) point within the
domain. These blending functions satisfy the basic require-
ment of smoothly eliminating the effect of the corner inter-
polants: Bi,i−1 is 1 at the corner (i−1, i) and decreases to 0
as it reaches the adjacent corners (i− 2, i− 1) and (i, i+1);
it is zero on the remaining sides Γ j , j /∈ {i− 1, i} with zero
cross-derivatives. This construction guarantees the reproduc-
tion of the ribbons, as well, since Bi,i−1(u,v)+Bi+1,i(u,v) =
1 everywhere on side Γi, and it can be shown that the deriva-
tive constraints are also satisfied, see details in the original
paper.

This completes the definition of the CB patch. Note, that
the fullness of the patch can only be modified to a limited ex-
tent by the scalar multipliers wi. In the following section we
describe a scheme that provides an extra degree of freedom
to shape the interior of the patch.

5. The Midpoint (MP) Patch

We are going to introduce an alternative blending function
that allows for an extra control in the surface interior. In
order to guarantee interpolation of the boundaries, we will
first describe a parameterization based on barycentric coor-
dinates.

5.1. Barycentric Parameterization

Generalized barycentric coordinates have been intensely in-
vestigated, see e.g. Hormann and Floater.3 Having a polygon
with vertices V1, ..,Vn, any point (u,v) in the interior can be
expressed as a barycentric combination of the vertices, with
the basic properties

n

∑
i=1

λi(u,v)Vi = (u,v),
n

∑
i=1

λi(u,v) = 1, λi(V j) = δi j.

(7)

Figure 2: Constant parameter lines of the barycentric param-
eterization related to the red side, with resolution 1/10.

The elements of the n-tuple {λ1, ...,λn} represent the
barycentric coordinates. Using these, it is possible to define
appropriate side and distance parameters for n-sided patches:

si = λi/(λi−1 +λi) , hi = 1−λi−1−λi. (8)

It is easy to show, that the si parameters represent a family
of sweeping lines within the domain, and the hi parameters
satisfy the basic distance properties (see Section 3). In ad-
dition, hi increases linearly on Γi−1 and Γi+1, and takes the
value 1 along all “distant” sides, i.e., hi = 1 for all points on
the domain edges Γ j, where j /∈ {i− 1, i, i+ 1}. Due to the
linearity of the parameters on side Γi, the following equa-
tions also hold:

si = hi−1 and 1− si = hi+1. (9)

This parametrization was suggested first in Várady et
al.,10 and it will be used for both the MP and GB patches
in this paper. As an example, the isolines in a five-sided do-
main are shown in Figure 2.

5.2. Rational Hermite Blending Functions

As it was pointed out earlier, the midpoint patch is very sim-
ilar to the CB patch, but it uses different corner blending
functions (marked with RH), comprised of a rational expres-
sion with cubic Hermite polynomials:

BRH
i,i−1(u,v) =

hiH(1− si−1)H(hi−1)+hi−1H(si)H(hi)

hi +hi−1
,

(10)
where

H(x) = (1− x)3 +3(1− x)2x (11)

with the following properties:

H(0) = 1, H(1) = 0, (12)

H′(0) = 0, H′(1) = 0, (13)



P. Salvi, T. Várady / Multi-sided Surfaces with Fullness Control

and also

H′(x) = H′(1− x). (14)

These blending functions behave in the same manner
as the distance-based blending functions of CB patches.
Note, that although they are based on the relatively com-
plex barycentric coordinates, the blend functions themselves
have become much simpler. The denominator of RH blends
is linear, and the numerator is only quartic w.r.t. the local
parameters, independently of the number of sides. Compare
this to the distance-based blend functions, where the rational
degree grows with the number of sides.

Observe that these blending functions do not sum to 1;
in other words they are weight deficient. In order to ensure
convex combination and affine invariance, we introduce an
additional, central blending function that compensates this
weight deficiency:

BRH
0 (u,v) = 1−

n

∑
i=1

BRH
i,i−1(u,v). (15)

In this way it is possible to associate another surfacing
term with BRH

0 (u,v) and gain additional design freedom for
the interior. The value and the derivative of BRH

0 (u,v) vanish
on all boundaries, thus the interior can be adjusted without
violating the interpolation properties. We can choose an arbi-
trary middle point P0, and then adding the term P0BRH

0 (u,v)
completes the definition of the MP patch, as was given ear-
lier in Eq. (5).

5.3. Setting the Central Control Point

We present two strategies for the placement of P0; the same
ideas were used in Várady et al.10 As a default location, we
can take the mass center of the “middle” points of the corner
interpolants:

P0 =
1
n

n

∑
i=1

Ii,i−1(0.5,0.5). (16)

As an alternative, the user can set a position C for the surface
center, i.e., a point associated with the central point (u0,v0)
of the domain polygon. Then we can compute P0 by

P0 =
1

BRH
0 (u0,v0)

[
C−

n

∑
i=1

Ii,i−1(u0,v0)B
RH
i,i−1(u0,v0)

]
.

(17)

The “strength” of the central control point depends on the
number of sides. Table 1 shows BRH

0 (u0,v0) = 1− n
2 H( n−2

n )
for various values of n. Later we will discuss the modifica-
tion of these values via reparameterization of the distance
parameters (see Section 6.1).

n = 5 n = 6 n = 7 n = 8

BRH
0

3
25 = 0.12 2

9 ≈ 0.22 15
49 ≈ 0.31 3

8 ≈ 0.38

Table 1: Blend deficiencies of the MP patch at the domain
center as a function of the number of sides.

5.4. Proof of Interpolation

For a point (u,v) on Γi, we need to prove

S(u,v) = Ii,i−1(si,si−1) = Ii+1,i(si+1,si), (18)

S′(u,v) = Ii,i−1(si,si−1)
′ = Ii+1,i(si+1,si)

′, (19)

where x′ denotes a directional derivative by an arbitrary di-
rection in the (u,v) plane.

Blends based on different sides vanish, i.e., BRH
j, j−1 = 0,

where j /∈ {i, i + 1}, as we have one of four situations:
(i) h j−1 = h j = 1, (ii) h j−1 = 1 and s j = 1, (iii) h j = 1
and s j−1 = 0, or (iv) s j−1 = 0 and s j = 1. In all cases a
Hermite polynomial becomes zero in both terms of the nu-
merator. The same reasoning works also for the derivatives,
due to Equation (13). Also, using Equations (9) and (14),
straightforward algebra leads to

BRH
i,i−1(u,v)

′ = H′(si)s
′
i =−BRH

i+1,i(u,v). (20)

In other words, for a point on Γi, we have

S(u,v) = Ii,i−1(si,si−1)B
RH
i,i−1(u,v)+

Ii+1,i(si+1,si)B
RH
i+1,i(u,v), (21)

S′(u,v) = Ii,i−1(si,si−1)
′BRH

i,i−1(u,v)+

Ii+1,i(si+1,si)
′BRH

i+1,i(u,v). (22)

Consequently, we can prove Equations (18) and (19) by
noticing that

BRH
i,i−1(u,v)+BRH

i+1,i(u,v) = 1. (23)

6. The Generalized Bézier (GB) Patch

The Generalized Bézier patch is defined by a multi-sided
control grid; the scheme has been introduced recently by the
current authors.10 It is a full generalization of quadrilateral
Bézier patches, both in terms of its control structure and its
behaviour along the boundaries.

The cross-derivatives along the boundaries are determined
by the first two rows of control points. For a degree d GB
patch, we define the number of layers (rows) as l = dd/2e.
For example, Figure 3 shows the control points of a five-
sided quintic patch with 3 layers. It can be seen, that the
control point structure associated with a given side is identi-
cal to that of a quadrilateral Bézier patch.

Coloring shows a classification of the control points: at
the corners there are four corner control points (red), these



P. Salvi, T. Várady / Multi-sided Surfaces with Fullness Control

are associated with the i-th and (i + 1)-th side. Between
these, there are ribbon control points (green), these are as-
sociated exclusively with the i-th side. There are interior
control points (yellow) in the middle, which can be placed
automatically by a degree elevation algorithm. Finally, there
is a single center control point (blue), that is responsible for
the middle of the patch.

The behaviour of the GB patch at the boundaries is de-
fined by the corresponding layers only; assume there is an
edge shared by an adjacent quadrilateral or multi-sided patch
having compatible rows of control points, then the connec-
tion will be smooth, as if ordinary quadrilaterals were con-
nected.

The GB patch is defined over a regular polygonal domain
in the (u,v) plane. The side and distance parameters si and
hi are defined by the barycentric scheme, as in the case of
MP patches, see Section 5.1. The patch equation is

SGB(u,v) =
n

∑
i=1

d

∑
j=0

l−1

∑
k=0

Cd,i
j,kµi

j,kBd
j,k(si,hi)+C0B0(u,v),

(24)
where n is the number of sides. The indexing scheme is side-
based: Cd,i

j,k refers to the j-th control point in the k-th row of
the i-th side. Note that most control points have two indices,
e.g. C5,1

2,1 =C5,0
4,2 .

The control points Cd,i
j,k are multiplied by a biparametric

Bernstein polynomial Bd
j,k(s,h) = Bd

j (s) ·Bd
k (h) and a ratio-

nal function µi
j,k (see below); the central control point C0 is

multiplied by the weight deficiency B0, such that the sum of
all weights becomes 1.

The scalar multipliers µi
j,k take on constant values (0, 0.5

or 1), except for those associated with the corner control
points, see Figure 3. In this latter case, rational expressions
of the distance parameters are used:

αi =
hi−1

hi−1 +hi
, βi =

hi+1
hi+1 +hi

. (25)

These weights are needed to ensure G1 continuity, although
the choice of 0.5 for µi

j,k (where j = k or j = d− k) is quite
arbitrary.

It has been proved in the original paper,10 that GB patches
interpolate the position and first cross-derivative of Bézier
surfaces created by the first two rows of the related sides.
The paper also presents a method to unite Bézier ribbons of
various degrees into a single patch via degree reduction and
elevation algorithms.

6.1. Controlling Blend Deficiency

In this section we will discuss how one can set the variation
of the blending functions within the domain, and accordingly
the central weight deficiency of GB patches. Reparameteriz-
ing the distance parameters provides an additional degree of

Figure 3: Rational weights of the GB patch. Black frames
show the layers associated with two sides.

n 3 4 5 6 7 8

d = 3 -0.11 0.00 0.12 0.22 0.31 0.38

d = 4 -0.22 0.14 0.38 0.54 0.65 0.72

d = 5 -0.43 0.00 0.29 0.47 0.59 0.68

d = 6 -0.48 0.10 0.44 0.63 0.75 0.82

d = 7 -0.61 0.00 0.37 0.59 0.72 0.80

Table 2: Blend deficiencies of the GB patch at the domain
center as a function of the degree and the number of sides.

freedom, by means of which it is possible to modify the in-
terior shape properties in a favourable manner.

This reparameterization has been proposed earlier by
Salvi et al.8 We retain the basic properties of the original pa-
rameterization along the edges of the domain polygon, but
modify the distribution of the hi isoparameter lines by a bi-
quadratic function in the interior. We can set the distance
parameter at the domain center to an arbitrary x value by the
following formula:

ĥ = h
(

1+4(1− s)s(1−h)h · (x−hc)

(1−hc)h2
c

)
, (26)

where hc = h(u0,v0) = (n−2)/n. Default and reparameter-
ized isolines are shown in Figure 4.

Table 2 shows the blend deficiencies at the domain center
for various degrees and number of sides without reparam-
eterization. We can observe that the default yields negative
values for n = 3, which would lead to a counter-intuitive (re-
verse direction) sense to the movement of the central control
point. This can be avoided easily when reparameterization is
applied. Another observation is that if we increase the num-
ber of sides and/or the degree, the central weight deficiency
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(a) n = 3, d = 7 (left: default, right: ĥ(u0,v0)≈ 0.45) (b) n = 8, d = 7 (left: default, right: ĥ(u0,v0)≈ 0.60)

Figure 4: Reparameterization to ensure zero deficiency.

n 3 4 5 6 7 8

d = 3 0.39 0.50 0.57 0.61 0.65 0.67

d = 4 0.39 0.47 0.51 0.55 0.58 0.60

d = 5 0.44 0.50 0.54 0.58 0.60 0.62

d = 6 0.43 0.48 0.52 0.55 0.57 0.59

d = 7 0.45 0.50 0.54 0.56 0.58 0.60

h(u0,v0) 0.33 0.50 0.60 0.67 0.71 0.75

Table 3: Central distance parameter values for zero defi-
ciency. The bottom row shows the default values.

also increases drastically, which may result in an excessive
weight assigned to the center point; this is not desirable, as
it may reduce the weight of the surrounding control points.
Reparameterization helps to set the central weight as strong
as requested, however, it should be noted that finding the op-
timal values is still subject of ongoing research.

It is also possible to compute x values that set the defi-
ciency to zero (see Table 3). In this case the central control
point has no effect at all. Experience shows, that zero set-
tings create only moderate changes in the parameterization,
and do not change surface quality significantly. Examples
are shown in Figure 4.

7. Discussion

In the previous sections we have summarized the mathemat-
ical formulation of the CB, MP and GB patches.

(i) It was shown that CB patches are defined by arbi-
trary boundary curves and cross-derivatives, with a distance-
based parameterization and high-degree rational blending
functions. These patches have no weight deficiency, thus the
only option for fullness control is to adjust the magnitude of
the ribbons—see the constant wi in Eq. (1).

(ii) MP patches also interpolate arbitrary boundary
curves and cross-derivatives, but apply a more sophisticated
barycentric distance parameterization with rational Hermite
blending functions. These are low-degree rational polyno-
mials, and their degree does not depend on the number of
sides. The MP equation contains an extra term due to the
weight deficiency of the RH blends, and this offers an ad-
ditional tool to explicitly prescribe the middle point of the
patch.

(iii) GB patches belong to another surface family, defined
by a set of control points. In this case, the boundaries and
cross-derivatives are defined by the first two rows of the
multi-sided control grid. This representation is also based
on the barycentric distance parameterization, but here con-
trol points are associated with Bernstein-like rational blend-
ing functions, thus providing high degree geometric freedom
for manipulating the interior of the patch, when needed. It is
also possible to elevate the degree of GB patches to gain ad-
ditional control points.

It would be hard to demonstrate the editing capabilities of
these patches, however, it is possible to compare how these
patches could approximate various triangular meshes. Two
examples will be analyzed.

7.1. Example 1—Synthetic Mesh

Our first example is a six-sided patch on a dense mesh of
a sphere octant, see Figure 5. The boundaries run on the
spherical surface, and the cross-derivatives are also set ac-
cordingly. With its default boundary ribbons, the CB patch
yields a fairly rough approximation. When the ribbon multi-
pliers are also optimized, a more accurate approximation is
obtained, see related deviation maps in Figures (a) and (d),
respectively. Dragging the midpoint of an MP patch onto
the sphere improves the default deviation map, see Fig. (b).
Here we can further optimize the ribbon magnitudes, as well,
yielding a more accurate patch, see Fig. (e). In the last case,
the boundaries and the cross-derivatives are represented as
accurate approximations of the sphere, given in Bézier form.
A default 5-degree GB patch is shown in Fig. (c), as a rough
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(a) Default CB patch (b) Default MP patch (with fixed center) (c) Default quintic GB patch

(d) Optimized CB patch (e) Optimized MP patch (with fixed center) (f) Optimized septic GB patch

Figure 5: Comparison on synthetic data: images show deviations from a dense sphere octant mesh with radius 100; green shows
the range ±0.05, red and blue have maximum intensity at ±0.2. Red and blue markers show the places of maximum deviation.

CB MP GB

Octant default 5.43% 0.46% 0.38%

Octant optimized 0.61% 0.09% 0.03%

Car default 6.68% 1.17% 1.06%

Car optimized 1.27% 1.11% 0.37%

Table 4: Numeric comparisons—all values are maximum de-
viations from the mesh, shown as (rounded) percentages of
the bounding box axis.

approximation of the sphere. Elevating the degree, and op-
timizing the control points, including the interior control
points (yellow) and the center control point (blue), leads to
a very accurate patch that satisfies the preset tolerance crite-
rion for the full patch. Table 4 shows the maximum devia-
tions for all the above six cases.

Figure 6: Mesh of a concept car and a network of feature
curves. The curves defining the surface in Example 2 are
highlighted.

7.2. Example 2—Concept Car

In the second example, we investigate how one can approx-
imate the mesh of a large car model, see Figure 6. Only a
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(a) Default CB patch (b) Default MP patch (with fixed center) (c) Default quintic GB patch

(d) Optimized CB patch (e) Optimized MP patch (with fixed center) (f) Optimized septic GB patch

Figure 7: Comparison on real data: images show deviations from a car body part with a bounding box axis of 1885mm; green
shows the range ±2mm, red and blue have maximum intensity at ±12mm. Red and blue markers show the places of maximum
deviation.

few feature curves have been drawn onto the mesh, bounding
eight 5-sided, six 4-sided and two 3-sided patches. The main
challenge is to achieve a good approximation of the under-
lying mesh despite the small number of surfaces. The cross-
derivatives are calculated by estimated surface normals at
the curve markers. We have picked a 5-sided patch for test-
ing, that is strongly curved in both directions and also has an
additional shape variation over the wheel.

Figure 7 shows the results of using different types of
patches, with and without optimization, analogously to the
previous example. We can see that the best approximation is
achieved by the GB patch, as before. It is a relatively large
error, but reasonable considering the sparse set of curves. A
more accurate representation could be achieved by adding
subdivision curves at the highly curved parts.

Conclusion and Future Work

We have investigated three multi-sided schemes with dif-
ferent degrees of freedom for adjusting the surface interior.
These schemes differ with respect to the geometric entities
available for shape adjustment. CB patches are derived from
ribbon surfaces that have additional weights to set the mag-

nitudes of the cross-derivatives, thus producing “stronger”
or “weaker” fullness in the middle. MP patches offer an ex-
tra surface point to be set and interpolated, in addition to the
ribbons and optimized magnitudes. GB patches are based on
a multi-sided control grid, where the external rows of con-
trol points satisfy the boundary constraints, while the interior
control points are generated by an automatic mechanism and
can be used for further shape adjustment.

The underlying mathematical structure of these schemes
are, of course, different. First of all, they differ in the param-
eterization of the polygonal domain, and the construction of
blending functions that combine the controlling geometric
entities. We have presented a new blending function to define
the MP patch. A modification of the barycentric parameteri-
zation scheme has also been discussed, to adjust the weight
deficiency of both the MP and GB patches.

We have compared these multi-sided schemes through
their capabilities of approximating meshes, and numerically
demonstrated the expected improvements in the case of MP
and GB patches. MP patches seem to be a good choice for
ribbon-based transfinite interpolation. GB patches, defined
by Bézier-type boundaries, provide a high-degree of free-
dom for fullness control.
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There are several open questions concerning the GB
patch, such as the optimal setting of weight deficiency, al-
gorithms for approximation and fairing, and extending the
scheme to B-spline boundary curves, as well.
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