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Abstract
One of the major problems in CAGD is to create mathematical representations for complex free-form objects
composed of several smoothly connected surfaces. An intuitive solution is curvenet-based design, where designers
directly define feature curves of the object, which are interpolated by multi-sided surfaces. A convenient repre-
sentation for these models is based on transfinite surface interpolation. This paper introduces two new schemes
for transfinite surfaces: a true multi-sided generalization of the Coons patch, and another based on a natural
combination of curved side interpolants. The two formulations are supported by new parameterizations that need
to satisfy strict tangential constraints along the boundaries. A few examples comparing the two patches illustrate
the results.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Curvenet-based design9 is an intuitive approach to create
complex free-form CAD models in three dimensions. The
process begins with creating a curve network representing
the edges and feature lines of the object. These curves may
come from several sources, like traditional blueprints, 2D
sketches, or directly by some 3D graphical user interface.
Then surfaces are stretched over the curve loops interpolat-
ing these boundaries. Transfinite interpolation surfaces are
particularly suitable for this purpose, since they are defined
solely by the boundary curves and their cross-derivatives.

The Coons patch is a well-known example for four-sided
(biparametric) configurations, widely used due to its natural
curvature distribution. Multi-sided patches, however, cannot
be defined by two parameters, and the known solutions —
including the patches of Gregory1 and Kato4 — differ from
the original Boolean sum logic proposed by Coons. These
may also exhibit shape artifacts in certain situations with
highly curved boundaries and uneven lengths.

In this paper we introduce two new surface representa-
tions that are “close” to Coons’ original idea. The first is
a true generalization of the Coons patch, consisting of side

interpolants and corner correction patches; the second is a
surface combining curved side interpolants by a natural ap-
plication of blend functions.

In Section 2 we will examine the Coons patch and rewrite
it in an easily extensible formulation. Then in Section 3 we
will review the most important traditional n-sided surface
formulations. The generalized Coons patch will be presented
in Section 4, along with two new parameterization methods.
It is followed by the definition of the curved interpolant-
based surface in Section 5, and some examples in Section 6.

This paper is a condensed version of a more-detailed jour-
nal paper6, where all mathematical details and the related
proofs are also presented. At the same time, we hope that
the basic concept of these new representational forms can be
understood based on the current paper, as well.

2. Coons patch reformulation

Let us assume that we have a four-sided surface patch S pa-
rameterized in the (u,v) plane (u,v∈ [0,1]). Given positional
side constraints S(u,0), S(u,1), S(0,v), S(1,v) and tangen-
tial (cross-derivative) constraints Sv(u,0), Sv(u,1), Su(0,v),
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Figure 1: Domain of a Coons patch using side-based param-
eterization

Su(1,v), the patch equation suggested by Coons can be writ-
ten as

U =
[

α0(u) β0(u) α1(u) β1(u)
]
,

V =
[

α0(v) β0(v) α1(v) β1(v)
]
,

Su =
[

S(u,0) Sv(u,0) S(u,1) Sv(u,1)
]
,

Sv =
[

S(0,v) Su(0,v) S(1,v) Su(1,v)
]
,

Suv =


S(0,0) Su(0,0) S(1,0) Su(1,0)
Sv(0,0) Suv(0,0) Sv(1,0) Suv(1,0)
S(0,1) Su(0,1) S(1,1) Su(1,1)
Sv(0,1) Suv(0,1) Sv(1,1) Suv(1,1)

 ,

S(u,v) = V (Su)T +SvUT −V SuvUT .

This is the well-known Boolean sum formulation2, where
α0, α1, β0, β1 are the cubic Hermite blending functions,
needed to satisfy G1 continuity:

α0(t) = 2t3−3t2 +1, α1(t) =−2t3 +3t2,

β0(t) = t3−2t2 + t, β1(t) = t3− t2.

In order to reformulate the above definition on a per-side
basis, we will use cyclic indices (with 1 coming after 4), and
introduce the so-called side parameters, si = si(u,v), associ-
ated with the i-th side of the domain, taking the values u, v,
1− u and 1− v, as appropriate (see Fig. 1). Then, denoting
the positional and tangential constraints by Pi(si) and Ti(si),
respectively, as well as using Wi,i−1 for the twist vector, the
Coons patch can be formally rewritten as

S(u,v) =
4

∑
i=1

[
α0(si+1)
β0(si+1)

]T [ Pi(si)
Ti(si)

]
−

4

∑
i=1

[
α0(si+1)
β0(si+1)

]T [ Pi(0) Ti−1(1)
Ti(0) Wi,i−1

][
α0(si)
β0(si)

]
.

We assume that twist vector compatibility is ensured, i.e.,

Wi,i−1 :=
∂

∂si
Ti(0) =− ∂

∂si−1
Ti−1(1).

For contradicting boundary constraints, this can be resolved
by Gregory’s rational twists (see Gregory3 or Farin2).

This formulation can be further simplified, if we replace

the tangential blending with linear interpolants or ribbons:

Ri(si,di) = Pi(si)+diTi(si).

Here we introduced another local parameter, the so-called
distance parameter di = di(u,v), that measures some kind of
distance from the i-th side. In this four-sided case di(u,v) =
si+1(u,v) is a simple choice. The resulting patch becomes

S(u,v) =
4

∑
i=1

Ri(si,di)α0(di)

−
4

∑
i=1

Qi,i−1(si,si−1)α0(di)α0(si), (1)

where Qi,i−1 is a corner correction patch given by

Qi,i−1(si,si−1) = Pi(0)+(1− si−1)Ti(0)+ siTi−1(1)

+ si(1− si−1)Wi,i−1.

This will not be identical to the Coons patch, but it is a very
similar construction that trivially satisfies all the boundary
constraints. This formulation will be the basis of the gener-
alization presented in Section 4.

3. Multi-sided patches

We can interpret the same problem for an arbitrary number
of boundary curves. Given n three-dimensional curves Pi(si),
1 ≤ i ≤ n, and cross-derivative functions Ti(si) along these
curves, we want to construct an n-sided patch that interpo-
lates these boundary curves and derivatives. For this, we will
need a domain polygon in the parameter plane. The simplest
choice is a regular polygon; for enhanced, non-regular do-
main alternatives, see Várady et al.8

We will also need a parameterization scheme that trans-
forms the (u,v) coordinates of the parameter plane into local
parameters of the individual boundary curves. Two possible
constructions are presented in Section 4.3. For a more com-
plete overview, see Salvi5.

The rest of this section concentrates on how these curves
and cross-derivative functions can be combined to create an
interpolating patch, and what kind of blending functions can
be used. As a reminder, Figure 2 presents a bird’s-eye view
of the steps needed to evaluate a transfinite surface.

Charrot and Gregory1 proposed an n-sided patch based on
corner interpolants, i.e., surfaces that interpolate two con-
secutive boundary curves, defined as

Rcorner
i,i−1 (si,si−1) =

Pi(si)+(1− si−1)Ti(si)+Pi−1(si−1)+ siTi−1(si−1)−
Pi(0)− (1− si−1)Ti(0)− siTi−1(1)− (1− si−1)siWi,i−1.

It is easy to see that these surfaces interpolate the i-th and
(i− 1)-th sides, and their cross-derivatives. A similar tech-
nique will be introduced in Section 5 for interpolating three
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Figure 2: Evaluation of a transfinite surface: (i) point in the
polygonal domain (ii) mapping into the domain of each bi-
parametric ribbon (iii) evaluating each ribbon (iv) blending
the evaluated points

sides. The Gregory patch is constructed in the following
way:

S(u,v) =
n

∑
i=1

Rcorner
i,i−1 (si(u,v),si−1(u,v)) ·

Bi,i−1(d1(u,v), . . . ,dn(u,v)).

Note, that we continue to use cyclic indices (e.g. i− 1 for
i = 1 is n, and conversely, i + 1 for i = n is 1). Here a more
complex blending function needs to be used, that is a rational
polynomial function of the distance terms di:

Bi,i−1(d1, . . . ,dn) =
∏k /∈{i,i−1} d2

k

∑l ∏k /∈{l,l−1} d2
k

=
D2

i,i−1

∑l D2
l,l−1

,

with the notation De
i1...ik = ∏ j /∈{i1...ik} de

j . This blending
function will be used in Sec. 4.2 for the generalized Coons
patch. The di parameters in an n-sided polygon are generally
not equal to si+1 (as we have seen for rectangles in the previ-
ous section), but can be independent “distance” parameters.
For details, see Section 4.3.

Kato4 also used the linear side interpolants Ri introduced
above to define a patch as

S(u,v) =
n

∑
i=1

Ri(si(u,v),di(u,v))·Bside
i (d1(u,v), . . . ,dn(u,v)).

There are several variations on the blending function, one
popular choice8 being

Bside
i (d1, . . . ,dn) =

1/d2
i

∑ j 1/d2
j

=
D2

i

∑ j D2
j
.

Note, that the blending function is singular at the corners;
fortunately, the corner points are uniquely defined by the
boundary constraints.

4. Generalized Coons patch

The next few sections deal with the generalization of Coons
patches to n sides. The proposed interpolating surface uses
the same principles as the original Coons patch, i.e., com-
bines linear side interpolants and corner correction patches,
and thus can be regarded as a natural generalization, even
though the surface presented here will not revert to a Coons
patch for quadrilateral configurations.

In Section 4.1 a new patch construction is introduced, and
in Sections 4.2 and 4.3 we show suitable functions for blend-
ing and parameterization, respectively.

4.1. Coons Patch Generalization

With appropriate parameterization functions si(u,v) and
di(u,v), Equation (1) can be generalized as

S(u,v) =
n

∑
i=1

Ri(si,di) ·Bi(d1, . . . ,dn)

−
n

∑
i=1

Qi,i−1(si,si−1) ·Bi,i−1(d1, . . . ,dn),

where Bi = Bi,i−1 +Bi+1,i is a side blend, and Bi,i−1 is a cor-
ner blend function. Bi,i−1 is required to have the following
properties:

Bi,i−1(d1, . . . ,d j = 0, . . .dn) = 0, j /∈ {i−1, i}(2)

Bi,i−1(d1, . . . ,di = 0, . . . ,dn) +

Bi+1,i(d1, . . . ,di = 0, . . .dn) = 1, (3)

∂

∂d j
Bi,i−1(d1, . . . ,d j = 0, . . . ,dn) = 0, ∀ j. (4)

Section 4.2 will show a possible construction. Equation (2)
means that the blend function vanishes on all sides not con-
nected to the corner. Boundary interpolation is satisfied due
to Eq. (3), and finally Eq. (4) is needed for tangential inter-
polation.

Note that this patch, similarly to the Coons patch, com-
bines five surfaces to evaluate a point on the boundary: three
linear ribbons and two corner correction patches. This im-
poses several requirements for the (si,di) parameterization.
First, for si we need

si ∈ [0,1], (5)

and for a point on the i-th side, the parameterization has to
satisfy that

di = 0, (6)

si−1 = 1, si+1 = 0, (7)

di−1 = si, di+1 = 1− si, (8)

∂di−1
∂u

=
∂si

∂u
,

∂di−1
∂v

=
∂si

∂v
, (9)

∂di+1
∂u

=−∂si

∂u
,

∂di+1
∂v

=−∂si

∂v
. (10)



P. Salvi, T. Várady, A. Rockwood / New Schemes for Multi-sided Transfinite Surface Interpolation

Figure 3: Blending functions Bi,i−1 and Bi over a six-sided
domain.

The patches reviewed in Section 3 only require (5)–(7), so
we need to satisfy more strict restrictions here, but in Section
4.3 two techniques will be presented for creating eligible pa-
rameterizations.

4.2. Blending functions

Recall the blending function Bi,i−1 described in Charrot and
Gregory1:

Bi,i−1(d1, . . . ,dn) =
∏k /∈{i,i−1} d2

k

∑l ∏k /∈{l,l−1} d2
k

=
D2

i,i−1

∑l D2
l,l−1

.

Assumptions (2) and (3) are trivially true. A closer exam-
ination of the difference quotient leads to a straightforward
proof of (4), thus this blend function adheres to all require-
ments. Fig. 3 shows a graphical representation of Bi,i−1, as
well as the side blend Bi = Bi,i−1 +Bi+1,i.

4.3. Parameterizations

In the following we will propose two parameterizations that
satisfy all the requirements (5)–(10).

4.3.1. Interconnected Parameterizations

Take functions si(u,v) that give 0 for every point on the
(i− 1)-th side and 1 for those on the (i + 1)-th side; for all
other points inside the convex domain, they return a value in
[0,1]. For example, the s coordinates of the bilinear or radial
line sweeps1, 5 are such functions. These naturally satisfy (5)
and (7). Define a blending function α(t) ∈ [0,1] → [0,1]
with α(0) = 1 and α(1) = α

′(0) = α
′(1) = 0. Examples are

the Hermite function α0(t) from Section 2, or a variation of
the rational blend function presented in the previous section:

α(t) = (1−t)2

t2+(1−t)2 . Now we can define di by means of si−1

and si+1 as follows:

di(u,v) = (1− si−1(u,v)) ·α(si)+ si+1(u,v) ·α(1− si).

If we are on the i-th side, si−1 = 1 and si+1 = 0, so di = 0,
satisfying (6).

Still on the i-th side, di−1 and its derivative are the same
as si:

di−1 = (1− si−2) ·α(si−1)+ si ·α(1− si−1) = si,

∂di−1
∂u

=
∂

∂u
(1− si−2) ·α(si−1)+

∂

∂u
si ·α(1− si−1)

=
∂si

∂u
,

because the derivatives of the blend function vanish. The
same reasoning works for the derivative by v. Similarly

di+1 = (1− si) ·α(si+1)+ si+2 ·α(1− si+1) = 1− si,

∂di+1
∂u

=
∂

∂u
(1− si) ·α(si+1)+

∂

∂u
si+2 ·α(1− si+1)

=
∂

∂u
(1− si) =−∂si

∂u
,

so the requirements (8), (9) and (10) are all satisfied.

Fig. 4 shows constant s and d lines for this parameter-
ization (using the central line sweep parameterization10 as
a basis). The first image is based on the right side of the
polygon; the second image is based on the small side at the
top-right; and the third image is based on the top side. Note
that all lines of the second image start the same way (in a
differential sense) as their counterparts in the first and third
images.

4.3.2. Biquadratic Parameterization

The patch defined in Section 4.1 is using side-based linear
interpolants, but also corner-based correction patches. In the
following, two parameterizations will be used, one for the
ribbons (side-based parameterization), and one for the cor-
rection patches (corner-based parameterization). The idea is
that a linear side interpolant should have the same param-
eterization near the side adjacent to its base as the correc-
tion patch of the corresponding corner, enabling the correc-
tion patch to cancel out the extra terms generated by the rib-
bons. This will be achieved by biquadratic maps similar to
the overlap patch parameterization7.

We place a three-by-three control net on the domain,
and the resulting planar surface defines a parameterization
(see Fig. 5). We need the inverse of this biquadratic map,
which can be computed by numerical methods, such as the
Newton–Raphson algorithm. Note that the control points on
the left-hand side are the same in both the side-based and the
corner-based variants, so the two parameterizations behave
identically near the left boundary. In the following we will
examine the construction of these biquadratic control nets.

Imagine a domain with its i-th side on the u axis. For the
side-based case, the control points are defined as pl

i pm
i pr

i
pm

i−1 c pm
i+1

pl
i−1 po

i pr
i+1

 ,
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Figure 4: Constant parameter lines of the interconnected parameterization.

(a) Side-based construction

(b) Corner-based construction

Figure 5: Control net and constant parameter lines of the bi-
quadratic parameterization.

where pl
j, pr

j and pm
j are the left and right endpoints and the

midpoint of the j-th side, respectively; c is the center of the
domain and po

j is the domain vertex opposite to the j-th side
(for even-sided polygons po

j is the midpoint of the opposite
side).

When the basis is the corner at pl
i , the control points are pl

i pm
i pr

i
pm

i−1 c po
i−1

pl
i−1 po

i po
i,i−1

 ,

where po
i,i−1 is the vertex opposite to the vertex defined as

the intersection of the i-th and (i−1)-th sides (for odd-sided
polygons po

i,i−1 is the midpoint of the opposite side).

Note that the first two columns are the same as in the side-
based case. Also the first two rows have their counterparts in
the (i−1)-th side-based biquadratic as well. These relation-
ships tell us that the parameterization based on the i, i− 1
corner behaves the same way for a point on the (i− 1)-th
side as the parameterization based on the i-th side; and for
a point on the i-th side as the parameterization based on the
(i− 1)-th side. This is important, because it means that all
superfluous data that comes into the equations from the rib-
bon interpolation can be eliminated by corner-parameterized
correction patches.

There is one special case: three-sided segments have a
very intuitive, singular parameterization (depicted in Fig-
ure 6).

So in our transfinite surface scheme, side-based param-
eterizations are used for ribbons (Ri) and blends (Bi,i−1),
but corner-based parametrizations are used for the correction
patches (Qi,i−1). We will use the convention of referring to
corner-based parameters by (s∗i ,d∗i ), while retaining (si,di)
for side-based ones.

The parametrization requirements (5)–(7) are trivially sat-
isfied for side-based schemes. Linearity on the sides also
guarantees (8), even between a side-based and a corner-
based patch. The remaining constraints do not hold for ei-
ther type, but are valid in-between: the di−1 side-parameters
are equal to the s∗i corner-parameters in derivative sense
(a corner-parameter with index i is associated with the bi-
quadratic patch based on the i-th and (i−1)-th edges, using
the i-th edge as constant d∗i = 0). Similarly all requirements
are satisfied in this way.

Using this new double parameterization system, we have
to alter the original definition of the surface, substituting
Qi(s∗i ,d∗i ) = Qi,i−1(s∗i ,1−d∗i ) for Qi,i−1(si,si−1):

S(u,v) = ∑
i

Ri(si,di) ·Bi(d1, . . . ,dn)

− ∑
i

Qi(s
∗
i ,d∗i ) ·Bi,i−1(d1, . . . ,dn).
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Figure 6: Control nets for triangular domains, based on the bottom side (left image), the right side (right image) and both
(middle image).

Figure 7: Constituents of a curved ribbon.

5. Curved ribbons

The patch defined in the previous section is based on lin-
ear ribbons. These have the advantage of being very sim-
ple and can be computed efficiently. On the other hand,
highly curved surfaces may deviate far from their lin-
ear interpolants, thereby decreasing stability. Unintuitive
bulges, coming from contradicting cross-derivatives, pose a
common problem. Recall, however, that conventional side
interpolant-based transfinite interpolation surfaces do not
depend on the linearity of the ribbons. We can thus define
curved ribbons that follow the shape of the surface more
closely.

Let Ci(si,di) denote the curved ribbon for the i-th side. In
order to simplify the notation, we will drop the indices of
s and d when talking about only a single curved ribbon, as
it does not cause any ambiguity. The definition of Ci is as
follows (see Fig. 7):

Ci(s,d) = Rl
i(s,d)H(s)+Ri(s,d)H(d)+Rr

i (s,d)H(1− s)

− Ql
i(s,d)H(s)H(d)−Qr

i (s,d)H(1− s)H(d),

where

Rl
i(s,d) = Ri−1(1−d,s) = Pi−1(1−d)+ sTi−1(1−d)

Rr
i (s,d) = Ri+1(d,1− s) = Pi+1(d)+(1− s)Ti+1(d)

Ql
i(s,d) = Qi,i−1(s,1−d)

= Pi(0)+ sTi−1(1)+dTi(0)+ sdWi,i−1

Qr
i (s,d) = Qi+1,i(d,s)

= Pi+1(0)+dTi(1)+(1− s)Ti+1(0)+

d(1− s)Wi+1,i

and H(t) is a blend function, for example the Hermite blend
function α0(t).

It is interesting to note that the curved corner interpolants
of the Gregory patch1 can be defined in terms of ribbons and
correction patches, as well:

RGregory
i,i−1 (si,si−1) = Ri−1(si−1,si)+Ri(si,1− si−1)

− Qi,i−1(si,si−1).

The curved ribbon defined above interpolates three con-
secutive boundary curves using blends, which makes it es-
sentially a three-sided Coons patch. These ribbons can be
used as side interpolants for conventional transfinite inter-
polation patches, but there is also a more natural blending
scheme, as proposed in the next section.

5.1. Composite ribbon patch

The generalization of Coons patches, as introduced in Sec-
tion 4, does not work with curved side interpolants. How-
ever, we propose a new representation that combines curved
ribbons in a different way, and renders the elimination of cor-
rection patches possible, yielding a much simpler formula:

S(u,v) =
1
2

n

∑
i=1

Ci(si(u,v),di(u,v))Bi(d1(u,v), . . . ,dn(u,v)),

where the parameterization satisfies the requirements listed
in (5)–(10).

According to the characteristics of the Bi blend function,
for any point on the i-th boundary all addends of the sum
vanish except for Ci−1, Ci and Ci+1. Since each of these rib-
bons also interpolates the adjacent curves, the three ribbon
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(a) Conventional linear interpolant-based patch

(b) Composite ribbon patch

Figure 8: Mean map comparison of a model with four sur-
faces.

points are the same. Their cumulative blend is

Bi−1 +Bi +Bi+1 = Bi,i−1 +Bi +Bi+1,i

= (Bi,i−1 +Bi+1,i)+Bi

= 1+1 = 2,

hence the division by two in the surface equation.

It can be proven that the parameterization constraints can
be loosened. If we leave out the last two requirements (9 and
10), the patch remains valid, i.e., it will have the same tan-
gent plane for every boundary point as the respective Coons
ribbon, but it won’t have the exact same tangent vector. This
enables the use of many other parameterizations, such as the
bilinear or the central line sweep parameterizations.

In other words, we have created a new transfinite surface
representation that (i) has the same computational complex-
ity as other conventional methods, (ii) uses curved side in-
terpolants, and (iii) employs non-singular blend functions.

6. Examples

The first example in Fig. 8 shows the mean map of a model
containing three-, four- and five-sided surfaces. The first im-
age was created by a conventional linear interpolant-based
patch. Note the blue areas near the sides — these are artifacts
of the blending function, which abruptly drops as we move
away from the boundaries. The composite ribbon patch be-
low is free of these unwanted curvature changes.

(a) Conventional linear ribbon patch

(b) Generalized Coons patch

(c) Composite ribbon patch

Figure 9: Mean map comparison of a surface using different
patch types.

In Fig. 9 three schemes are contrasted using a single sur-
face. The low-curvature areas at the right-hand corners are
smoothed out in both of the new patches. The generalized
Coons patch and the composite ribbon patch are very simi-
lar, but the latter has even more smooth curvature transitions.

In order to understand the essential difference between
the two new patches, we should examine their ribbons. Fig-
ure 10 depicts them over the constant parameter lines of the
patches. In the linear ribbon case, the interpolants start to de-
viate from the surface at a very “early phase”, thus points in
the interior are actually computed as the affine combination
of relatively distant positions. On the other hand, the curved
interpolants on the right-hand side image are going close to
the predictable surface position, and in this way, points in the
interior are combinations of ribbon points that are relatively
close, keeping curvature variation at a low level. The slicing
maps show that both surfaces have sufficiently good quality.
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(a) Generalized Coons patch

(b) Composite ribbon patch

Figure 10: Ribbons and slicing map of a five-sided boundary
configuration.

Figure 11: A G1 model with two composite ribbon patches,
using isophote line visualization.

Finally, Fig. 11 shows isophote lines on two composite
ribbon patches connected by a smooth edge. The ends of the
lines match along the boundary, confirming G1 continuity,
and in most points they are also unbroken, exhibiting ap-
proximately G2 behavior.

Conclusion

Two new surface representations for transfinite surface inter-
polation have been presented. The first scheme can be con-
sidered as the true generalization of the Coons patch, us-
ing classical Boolean sum logic. The second is a transfinite
surface combining curved side-interpolants. In order to sat-
isfy the boundary constraints (positions, cross-derivatives),

special blend functions and parameterizations have been ap-
plied. Future research work is going to be directed towards
G2 ribbons and using non-convex parametric domains.
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