Natural control for multi-sided surfaces

Péter Salvi, Tamás Várady, Márton Vaitkus

Budapest University of Technology and Economics

Dagstuhl Seminar on Geometric Modeling

June 9-14, 2024

Outline

Motivation

Generalized Bézier patches

Curved domain

Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Blending functions

Tools for editing

Control vectors

Proportional editing

Conclusion

Multi-sided surfaces

Survey

Comput. Aided Geom. Des. 110 (2024) 102286

Contents lists available at ScienceDirect

Computer Aided Geometric Design

journal homepage: www.elsevier.com/locate/cagd

Genuine multi-sided parametric surface patches – A survey

Tamás Várady, Péter Salvi*, Márton Vaitkus

Budapest University of Technology and Economics, Budapest, Hungary

ARTICLE INFO

Keywords:
Multi-sided surfaces
Ribbon-based surfaces
Transfinite interpolation
Control point patches
Surface modeling
General topology

ABSTRACT

A state-of-the-art survey is presented on various formulations of multi-sided parametric surface patches, with a focus on methods that interpolate positional and cross-derivative information along boundaries.

Classification and constituents

Classification and constituents

Classification and constituents

Outline

Motivation

Generalized Bézier patches Curved domain Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control
Blending functions

Tools for editing

Control vectors

Proportional editing

Conclusion

Generalized Bézier patches

$$\mathbf{S}(u,v) = \sum_{i=1}^{n} \sum_{j=0}^{d} \sum_{k=0}^{(d-1) \div 2} \cdot \mathbf{C}_{ijk} \underline{\mu_{i,j,k}(u,v)} B_{i,j,k}^{d}(u,v) + \mathbf{C}_{0} \cdot \underline{B_{0}(u,v)}_{1-\sum \mu B}$$

 $B_{i,j,k}^d(u,v) := B_j^d(s_i(u,v)) \cdot B_k^d(h_i(u,v))$ with (s_i,h_i) local parameters

Curved domain

Multi-connected domains

Generalized B-spline patches

Outline

Motivation

Generalized Bézier patches

Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Blending functions

Tools for editing

Control vectors

Proportional editing

Conclusion

Cross-derivative strength

Setting by local parameters

Outline

Motivation

Generalized Bézier patches

Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control
Blending functions

Tools for editing

Control vectors

Proportional editin

Conclusion

'Templates' from medial axis – distance parameters

'Templates' from medial axis – parametric medial axis

'Templates' from medial axis – MAT-based quad structure

'Templates' from medial axis – T2 skeleton

'Templates' from medial axis -T3 skeleton

'Templates' from medial axis – T4 skeleton

'Templates' from medial axis – T5 skeleton

Degree synchronization

Distributing weight deficiency proportionally

Outline

Motivation

Generalized Bézier patches

Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Blending functions

Tools for editing
Control vectors
Proportional editing

Conclusion

Editing boundaries by control vectors – Exact G^1

Editing boundaries by control vectors – Approximate G^1

Editing the interior proportionally

Editing the interior proportionally

Outline

Motivation

Generalized Bézier patches

Curved domain Generalized B-spline patches

Ribbon generation

Cross-derivatives by parameters

Interior control

Blending functions

Tools for editing

Control vectors

Proportional editing

Conclusion

Conclusion & future work

- Curved, multi-connected domains
 - Handling of highly curved boundaries
 - Natural cross-derivative lengths
 - ► MAT → interior control structure
- Interior blends
 - Proportional weight deficiency distribution
- Editing
 - ▶ Boundary CPs → implicitly by control vectors
 - lacktriangle Interior CPs ightarrow simultaneously with a falloff function

Next: interior control structure for generalized B-spline surfaces

Related papers

1. Multi-sided patch survey

T. Várady, P. Salvi, M. Vaitkus: Genuine multi-sided parametric surface patches – a survey.

 $\textbf{Computer Aided Geometric Design}, \ Vol. \ 110, \ \#102286, \ 2024.$

2. Modeling with control vectors

P. Salvi, M. Vaitkus, T. Várady:

Constrained modeling of multi-sided patches.

Computers and Graphics, Vol. 114, pp. 86-95, 2023.

3. Independent interior controls

P. Salvi:

Intuitive interior control for multi-sided patches with arbitrary boundaries. Computer-Aided Design and Applications, Vol. 21(1), pp. 143–154, 2024.

4. MAT-based interior controls

M. Vaitkus, P. Salvi, T. Várady:

Interior control structure for Generalized Bézier patches over curved domains.

Computers and Graphics, 2024. (accepted for SMI'24)

https://3dgeo.iit.bme.hu/