
Fair Curves and Surfaces

Ph.D. Dissertation

written by Péter Salvi

Supervisor: Dr. Tamás Várady

14th January 2012

Eötvös Loránd University, Budapest

PhD School of Computer Science

Numeric and Symbolic Calculus Program

Head of PhD School: Dr. András Benczúr

Program Director: Dr. Antal Járai

2

Contents

1 Introduction 7

1.1 Interrogation Tools . 8

1.2 Overview . 10

1.3 Notations . 14

2 Fairing based on Target Curvature 17

2.1 Fairness Evaluation . 20

2.2 Curve Fairing Methods . 21

2.3 Surface Fairing Methods . 26

2.3.1 Extension by Isocurves 26

2.3.2 Extension by PDE . 28

2.3.3 Fairing by Curvature Approximation 30

3 Hierarchical Fairing with Constraints 33

3.1 Overview . 35

3.2 Continuity Constraints . 36

3.2.1 G1 Continuity . 37

3.2.2 G2 Continuity . 39

3.2.2.1 Minimization 39

3.2.2.2 Solution by Fixed Directions 41

3.2.2.3 Solution by Minimal Deviation 42

3.2.3 Twists . 42

3.3 Fairing Algorithms . 43

3.4 Fairing Four-sided Patches . 43

3.5 Extension to n-sided Patches 44

3

4 CONTENTS

3.5.1 Extension of the Algorithm 45

3.5.2 Mesh-based Fairing . 45

3.6 Examples . 46

4 Trans�nite n-sided Surfaces 53

4.1 Previous Work . 55

4.1.1 Reformulating the Coons Patch 55

4.1.2 Traditional Multi-sided Surfaces 58

4.2 Domain Constructions . 59

4.2.1 Arcs by Arc Lengths 61

4.2.2 Sides by Arc Lengths 61

4.2.3 Sides and Angles . 62

4.3 Parameterization Using Line Sweeps 63

4.3.1 Central Line Sweep . 65

4.3.2 Variants of the Distance Parameter 68

4.4 Multi-sided Coons Patch . 69

4.4.1 Coons Patch Generalization 70

4.4.2 Blending functions . 71

4.4.3 Parameterizations . 73

4.4.3.1 Interconnected Parameterizations 73

4.4.3.2 Parabolic Parameterization 77

4.4.3.3 Biquadratic Parameterization 80

4.5 Curved Side Interpolants . 85

4.6 Composite Ribbon Patch . 87

4.7 Test Results . 88

Summary 95

Appendix A Generalized Coons Patch � Proof 99

A.1 Positional Constraints . 99

A.2 Tangential Constraints . 100

A.3 Biquadratic Parameterization Case 102

Appendix B Parabolic Parameterization � Proof 105

CONTENTS 5

Appendix C Composite Ribbon Patch � Proof 107

C.1 Positional Constraints . 107

C.2 Tangential Constraints . 109

Bibliography 113

6 CONTENTS

Chapter 1

Introduction

You shall be yet far fairer than you are.

� Shakespeare: Antony and Cleopatra, Act I, Scene 2

Creating aesthetically pleasing, fair curves and surfaces is a principal issue of

Computer Aided Geometric Design (CAGD). It is especially so for automo-

biles and other consumer goods, such as household appliances, where sales

largely depend on the appearance of the products. Using today's technology,

professional designers still have to spend many days manually adjusting con-

trol points in order to create Class A surfaces with smooth connections. This

research is aimed at developing new, automatic or semi-automatic methods

for creating fair geometries.

Fairness, however, is an elusive concept. There is no exact mathematical

de�nition, and di�erent applications may have di�erent requirements. Still,

researchers agree that evenly distributed curvature is favorable [6, 29]. It is

not su�cient, though, just to smooth the surface: we have to preserve the

highly curved features of the original model. Locality and deviation control

are thus important factors in fairing algorithms.

Most real-life models, where appearance counts, contain smooth edges,

usually de�ned by �llet surfaces and corner patches. These need to be con-

tinuously joined to the primary surfaces, so besides individual fairing, care

should be taken to enhance the connections between surfaces as well. In this

context, �smooth connections� usually mean G2 continuity. G-continuity is

7

8 CHAPTER 1. INTRODUCTION

less strict than C-continuity: it is su�cient that there exists a parameteriza-

tion of the surfaces such that C-continuity applies [6]. Informally speaking,

this means that for G1 connections the two surfaces share a common tangent

plane at every point of the boundary curve, while for G2 connections they

also have matching surface curvatures. These are often referred to as tangent

continuity and curvature continuity, respectively.

Fair curves and surfaces are crucial in many practical applications. One of

these is Digital Shape Reconstruction (DSR), which deals with the creation of

geometric models based on measured data. Its work�ow comprises triangu-

lation, segmentation, classi�cation, surface �tting and surface improvement

[40]. It is a very complex procedure, where even slight measurement errors

can cause signi�cantly decreased quality. This is why fairing methods are

indispensable in DSR. So-called variational methods can be integrated into

the surface approximation process, playing an important part in the surface

�tting phase. In contrast, post-processing fairing algorithms are applied at

the �nal improvement stage.

Another fundamental application of fairing is in surface design. There are

various ways to build a model; one approach is to �rst create a curve network

representing the edges and feature lines of the actual object. The curves may

come from several sources, like traditional blueprints, 2D sketches, or directly

by some GUI interface. These curves need to be smooth, in order to be able

to �t high-quality surfaces onto them at a later stage.

In curvenet-based design it is also crucial to adopt the most suitable types

of surfaces. Trans�nite interpolation surfaces are particularly suitable for this

purpose, and their application can be considered as a kind of fairing � after

all, one could de�ne trans�nite interpolation surfaces as �surfaces with fair

interior that maintain boundary constraints�. In the light of this, though not

fairing per se, I have dedicated a chapter to the creation of these surfaces.

1.1 Interrogation Tools

There are various visualization tools that help a designer to �nd low-quality

regions in a curve or surface. These display the geometry in such a way, that

1.1. INTERROGATION TOOLS 9

Figure 1.1: A curve and its curvature comb

�aws of a given property become more discernible, or even obvious. One

particularly useful tool for examining curves is the curvature comb, where

we place normal-directed �teeth�, proportional to the curvature at their foot-

points. The curve in Fig. 1.1, for example, looks quite smooth at �rst sight,

but if we look at the comb, it reveals that the curvature is uneven and it

should be faired.

Perhaps the most well-known method for evaluating a surface, called con-

touring, is to intersect it with parallel planes and inspect its cross section

curves (Fig. 1.2). These curves, in turn, can be examined using curvature

combs as explained above. Another variant, called slicing map, uses a tex-

ture of two colors alternating at the cross section curves. The top example

in Fig. 1.3 shows two surfaces: the coloring emphasizes the small bumps on

the surfaces, which appear as wiggles, and the sudden breaks in the lines also

show the error in G1 continuity. The bottom example in Fig. 1.3 shows a fair

version of these surfaces with G1 continuity.

Environment maps can also help in �nding small artifacts on the surface

(Fig. 1.4). However, most of the time we need to study the curvature as well.

There are several curvature maps for this purpose, displaying the principal

curvatures, their mean (mean curvature map) or their product (Gauss cur-

vature map). These encode the curvature information using a color range

� here we use the convention that blue means negative, green means (ap-

proximately) zero, and red means positive. Other colors of this spectrum are

interpolated, see for example Fig. 1.5.

Last but not least, re�ection lines or isophotes can also be applied to

detect regions of low surface quality and analyze the connection between

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Cross section curves of a surface.

patches. Isophotes can be thought of as the re�ections of parallel neon lights;

it is a texture alternating two colors, similarly to the slicing map, but the

color change is determined by the angle between the surface normal and a

vector originating from a reference point (see Fig. 1.6).

As the slicing map can expose problems of tangent plane continuity, re-

�ection lines can expose changes in surface curvature. Fig. 1.7 shows �ve

surfaces, four �llets connecting to a corner patch. The isophotes do not

match at the left boundary, because the connection is only C0. The other

boundaries have matching lines, but the stripes have a sudden turn, showing

that there is only G1 continuity. Smooth lines require G2 continuity, like in

the interior of the surfaces. Furthermore, even with G2 continuity, uneven

curvature distribution can be spotted by wiggles, such as on the left sur-

face. Isophotes are invaluable for assessing surface quality and will be used

throughout this document.

Isophotes can also be useful for evaluating curves, as they can be applied

to extrusion surfaces. Fig. 1.8 shows the extrusion of the curve in Fig. 1.1.

1.2 Overview

Each of the following chapters covers a separate topic, and thus begins with

an introduction to the problem statement and previous research results before

1.2. OVERVIEW 11

Figure 1.3: Slicing map of two surfaces with C0 (top) and G1 (bottom)
continuity.

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Surfaces with environment mapping (left) and the texture used
(right).

Figure 1.5: Mean curvature map of a surface.

1.2. OVERVIEW 13

Figure 1.6: Computing isophotes.

Figure 1.7: Five surfaces with isophote visualization.

14 CHAPTER 1. INTRODUCTION

Figure 1.8: Extrusion surface with isophotes.

introducing new developments. In Chapters 2 and 3 new fairing algorithms

are proposed that operate on conventional parametric curves and surfaces.

Since today's CAGD softwares predominantly employ B-splines, all the equa-

tions are written using this formulation, but the methods could be applied

to other parametric constructions. In Chapter 2 a new procedure is de�ned

to evaluate the quality of curves and surfaces, and new fairing routines are

introduced. In Chapter 3 the problem of fairing multiple-patch models is

examined and a novel fairing approach is described that handles continu-

ity constraints. In Chapter 4 we study curve network-based design using

trans�nite interpolation surfaces. Two new patch representations are pro-

posed: the �rst can be regarded as the direct generalization of the Coons

patch, and the second is a natural application of curved side interpolants.

Further enhancements are also introduced, such as non-regular domains and

new parameterizations. A summary of the results concludes the dissertation.

1.3 Notations

The following notations are going to be used:

d, e, n, v, w vectors

c, α, β, γ, ξ constants

κ curvature (with indices: principal curvatures)

1.3. NOTATIONS 15

φ, χ, ψ angles

P , Q points

A, B matrices (elements are in lowercase, e.g. aij)

E a fairness measure or energy

C(t), S(u, v) a parametric curve or surface, respectively

R(s, d), C(s, d) ribbons (side interpolants)

Q(s, d) corner correction patch

T , U , V knot vectors (knots are in lowercase, e.g. ti)

i, j, k, l indices

m, n, r limits

p, q degrees

u, v, s, d, t parameters

N
T,p,(k)
i (u) kth derivative of the ith p-degree B-spline basis of T at u

Coordinates are written as superscripts, while elements are subscripts,

e.g. nx and P y, but vi and aij.

The above notations are used as a rule of thumb only. When deviations

occur, the alternative meaning will be evident from the context.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Fairing based on Target

Curvature

There is no such thing as the �best� fairness measure. Di�erent applications

require di�erent approaches, and this is the reason why an abundance of

measures coexists in the literature. One well-known method has its roots

in 18th century shipbuilding technology, where in order to draw a smooth

curve, metal weights were placed at the interpolation points and a �exible

spline was spanned between them. The resulting curve minimizes the strain

energy, yielding the measure

Estrain(C) =

ˆ
(κ(t))2dt.

This favors low mean curvature, while giving a penalty to extreme values by

squaring [29].

Computing the curvature can be di�cult, so it is often replaced by a

simpler, parameter-dependent formula:

Êstrain(C) =

ˆ
(C ′′(t))2dt.

The drawback of this simpli�cation is that the second derivative and the

curvature may be far apart, when the curve's parameterization is substan-

tially di�erent from the arc-length parameterization, and thus any fairing

17

18 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

algorithm based on this quantity may have unexpected results. Still, this is

one of the most popular measures today.

One classical de�nition of fairness by Farin and Sapidis [6] is as follows:

A curve is fair if its curvature plot is continuous and consists

of only a few monotone pieces.

In other words, sudden changes in the curvature and in�ections are consid-

ered unfavorable. The energy associated with Minimum Variation Curves,

proposed by Moreton and Séquin [23, 24], respects this assumption:

EMVC(C) =

ˆ
(κ′(t))2dt.

However, this measure is much more di�cult to compute.

All of these measures have their counterparts for surfaces. For strain

energy there is the thin plate energy :

Eth.pl.(S) =

ˆˆ
S

a
[
(κ1(u, v))2 + (κ2(u, v))2

]
+ 2(1− b)κ1(u, v)κ2(u, v)dudv,

where usualy a = 1 and b = 0 or 1 [11]. Its simpli�ed version is

Êth.pl.(S) =

ˆˆ
S

S2
uu + 2S2

uv + S2
vvdudv.

This latter energy is parameterization-dependent, which renders it unstable,

but still it is the most often used fairness measure for surfaces.

There is also the energy for Minimum Variation Surfaces [24], which uses

the directional derivatives of the principal curvatures:

EMVS(S) =

ˆˆ
S

(
∂κ1(u, v)

∂e1(u, v)

)2

+

(
∂κ2(u, v)

∂e2(u, v)

)2

dudv,

where e1(u, v) and e2(u, v) are the principal directions at the (u, v) parameter.

While theoretically it is a very good measure of fairness, it cannot be used

in many applications due to its computational complexity.

Another way to look at these energies is to �nd a perfect curve or surface

19

(with zero energy): for the strain measure, this would be a line, since it

penalizes curvature, but the MVC energy uses the variation of curvature,

so the zero-energy curve would be a circular arc. Similarly, the thin plate

energy gives zero for a plane and the MVS measure for a sphere. Roulier and

Rando [29] give a very comprehensive, detailed review on these and other

fairness measures and their e�ects.

As it was outlined in Chapter 1, fairing algorithms can be divided into

two types: variational and post-processing methods. We will only deal with

the latter approach here, as it is more useful in the DSR context. Fairing al-

gorithms are often derived from fairness measures, for example by iteratively

moving the control points of a curve or surface in order to minimize the

chosen energy. The curve fairing method of Eck and Hadenfeld [5] �xes all

control points but one, and locally minimizes the Êstrain measure (or its vari-

ant using the third derivative), while keeping the distance from the original

curve under a given tolerance using the convex hull property. This technique

has a natural extension to surface fairing as well.

One of the simplest, but widely used curve fairing algorithm is knot re-

moval and reinsertion (KRR), originally conceived by Kjellander and later

optimized by Farin et al. [7]. This method uses the fact that (i) removing a

knot from a B-spline curve's knot vector makes it smoother (but of course,

the details around the knot are lost), and that (ii) a new knot can be added

without changing the shape of the curve. The idea is to remove a knot and

then reinsert it, resulting in a smoother curve with the same degree of free-

dom. The removal step can be solved by moving only one control point.

Alternatively, the deviation from the original control polygon can be mini-

mized, if we allow the movement of multiple points. The iteration of this

process, combined with some heuristics to choose the next knot based on a

fairing measure [13, 8], is a very e�cient algorithm both in computational

time and in quality. Unfortunately, its extension to surfaces [12] is much less

usable, since it can only guarantee fairing in one parametric direction, which

is not satisfactory in real-life applications.

In Section 2.1, I will propose a new method for fairness evaluation, that

tries to overcome the di�culties of the above mentioned measures � it is

20 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

based on the distribution of curvature, but it is still cheap to compute [31, 34].

In Sections 2.2 and 2.3, I will present curve and surface fairing algorithms

that are based on this measure [34, 30]. Some concluding thoughts will end

the chapter.

2.1 Fairness Evaluation

We have seen that curvature plays a central role in the fairness of a curve

� it is even used as a visualization tool. A good curvature comb indicates a

fair curve, and this gives the idea to fair the curvature comb �rst, yielding an

�ideal� or target curvature, and then compute the deviation from the original

curvature values. More precisely, we take the curvatures, which is practically

the same as the evolute, since κ = 1/ρ, and smooth it. Then the fairness

measure is

Ecurve =

ˆ
(κ(t)− g(t))2dt,

where g(t) is the smooth target curvature. To make the calculation easier,

the curvature is only computed at sampled points, so the discretized measure

becomes

Ẽcurve =
∑

i

(κ(ti)− g(ti))
2.

The only question that remains is how to smooth the curvature values. Var-

ious simple and fast methods can be e�ectively used, for example averaging

consecutive sampled curvature values. Global averaging can remove parts

of the curvature that represent features, so the user should be allowed to

restrict the smoothed area or to edit the target curvature manually. Another

possibility is to �t a curve over the plot of sampled curvatures � minimizing

the curvature of the �tted curve, in turn, gives even nicer results.

Fig. 2.1 shows a curve with its control points, curvature comb and target

curvature. We can see that the target curvature is much smoother than

the original comb; the fairness energy is the summed deviation of these two

values. One particularly interesting feature of this fairness evaluation is that

the target curvature depends on the original curve � there is no �xed zero-

2.2. CURVE FAIRING METHODS 21

Figure 2.1: Curve with curvature comb (black) and target curvature (green).

energy curve, but for each curve we construct an �idealized� shape similar to

the original.

The same concept also works for surfaces, just substituting the curvature

with a combination of principal curvatures. For example,

Ẽsurface =
∑

i

∑
j

(
(κ1(ui, vj)− g1(ui, vj))

2 +

(κ2(ui, vj)− g2(ui, vj))
2) ,

is a meaningful fairness measure, where g1(u, v) and g2(u, v) are target prin-

cipal curvatures, depicted in Fig. 2.2.

2.2 Curve Fairing Methods

The main idea is that if we reparameterize a curve to arc-length parame-

terization, the curvature will be equal to the norm of the second derivative

[21], so we can integrate it twice (using appropriate boundary conditions) to

reconstruct the curve. Discrete integration provides us with points we can

use for �tting, eventually resulting in a close approximation of the original

22 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

Figure 2.2: Target principal curvatures of a surface: g1 (top) and g2 (bottom).
Black teeth represent sampled curvature values.

curve. Consequently, using the target curvature instead of the real curvature,

a faired curve can be constructed (we assume that at both ends G1 continuity

is required, so there are �xed starting values for position and tangent). Un-

fortunately, parameterization is arbitrary and can be substantially di�erent

from arc-length parameterization.

However, suitable sampling can provide something similar, which we will

call pseudo arc-length parameterization. In this way, the target curvature

can be integrated twice to �nd discrete points of the faired curve directly.

Finally, these points can be used to �t a curve, which is expected to be better

than the original. The use of �tting harms locality, of course, but in return

we get a fast fairing method based on the variation of curvature.

For a more robust operation, numerical integration should be done start-

ing from both ends of the curve, and the two curves obtained will be blended

together to yield a single curve. Another important feature of every fair-

ing algorithm is deviation control, so this should be incorporated into the

integration step as well.

The algorithm can be broken down into the following four phases:

1. De�ne a pseudo arc-length parameterization for n points.

2.2. CURVE FAIRING METHODS 23

2. Create a target curvature.

3. Integrate twice starting at the �left� end to the �right� and vice versa,

with deviation control.

4. Blend the results.

5. Fit a spline that approximates the blended points.

Pseudo arc-length parameterization means that the parameter domain is

divided into n − 1 small segments that have approximately equal length.

The target curvature at these parameters can be regarded as the uniformly

sampled norms of second derivatives for an arc-length parameterized curve

with the same shape. Let tk denote the parameter of the kth parameter point.

The third step is carried out both from the left and from the right side.

Since these are symmetrical, we examine only the former. The numerical

integration algorithm needs a starting point, as well as the direction at every

point of the second derivative. In arc-length parameterization the second

derivative is in the normal direction, which can easily be calculated. In the

�rst integration step we approximate the �rst derivative at the starting point

of the curve in an arc-length parametric sense, i.e., Ĉ ′(0) = C(t1)−C(t0)
h

, where

h = l
n−1

, C denotes the actual, Ĉ the arc-length parameteric representation

of the curve, and l is the total length of the curve. In the second integration

step, we can use the coordinates of the original curve: Ĉ(0) = C(t0).

The Euler method [28] is the simplest numerical integration algorithm,

and even this produces good results. The equation for the �rst step is

Ĉ ′(s+ h) = Ĉ ′(s) + hĈ ′′(s),

and for the second step:

Ĉ(s+ h) = Ĉ(s) + hĈ ′(s).

The second-order Runge�Kutta method [28] uses a midpoint for better

24 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

approximation. Let n = 4k, then for the �rst step the equation is

Ĉ ′(s+ 2h) = Ĉ ′(s) + 2hĈ ′′(s+ h),

and for the second step:

Ĉ(s+ 4h) = Ĉ(s) + 4hĈ ′(s+ 2h).

Another alternative is Numerov's method [25], which gives an even better

approximation of the second-order integral:

Ĉ(s+ h) = 2Ĉ(s)− Ĉ(s− h) +
h2

12

(
Ĉ ′′(s+ h) + 10 · Ĉ ′′(s) + Ĉ ′′(s− h)

)
.

Figure 2.3: Maximum

deviation band around a

curve.

In this case the C(t1) position is also needed,

which should cause no problem, assuming an ap-

propriately small h and a �xed tangent at the

starting point.

Regardless of the integration method, we need

to control the deviation from the original curve.

This can be achieved by adding an extra term c(s)

to the equations, that pulls back the points when

they get too far from the original curve, i.e., they

got too close to a user-de�ned deviation tolerance.

Imagine a band around the original curve with the

tolerance as its width (Fig. 2.3). If the integrated

curve gets close to the border of the band, it will be turned towards the

middle.

c(s) = min

[
1,

(
|d(s)|
α

)2
]
· d(s),

where d(s) = C(s)− Ĉ(s) and α is the prede�ned tolerance.

In the fourth step we apply a blending function to the two curves (in-

tegrated from the left and right side, respectively). This is essential, as the

integration step does not guarantee that the point series arrives at the origi-

2.2. CURVE FAIRING METHODS 25

(a) Original: red; tight: blue; medium: green; loose: black.

(b) Isophotes of the extrusion surfaces.

Figure 2.4: Fairing a curve with tight, medium and loose tolerance.

26 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

nal curve's endpoint, which would be a natural requirement. Blending retains

the proper positions (and tangents), using a suitable blending function1, e.g.

the Hermite blending function λ(u) = 3u2−2u3, or the 5th-degree polynomial

λ(u) = 6u5−15u4 +10u3. Here u = s/l, i.e., the arc-length parameterization

normalized to [0, 1]. Consequently, the blended points will be of the form

P (u) = (1− λ(s/l))Ĉleft(s) + λ(s/l)Ĉright(l − s).

Finally, an approximating spline is computed by �tting a least-squares

B-spline over the points. Usually the original knot vector can be passed to

the �tting algorithm.

Figure 2.4 shows a curve before and after fairing, using three di�erent tole-

rances. We can see that fairness comes in exchange for a larger deviation.

The change in fairness is more visible on the extrusion surfaces � the wiggles

in the isophote lines are reduced in the tight and medium tolerance case, and

totally smoothed out with loose tolerance.

2.3 Surface Fairing Methods

A direct extension of the curve fairing method is, regrettably, infeasible, since

the isometric parameterization for a surface cannot be constructed (gener-

ally), not even in an approximate sense. Nevertheless, several options exist

for generalizing the target curvature-based approach.

2.3.1 Extension by Isocurves

The curve fairing method can be applied to individual isocurves of the sur-

face. Let the B-spline surface be given in the form

S(u, v) =
n∑

i=0

m∑
j=0

PijN
U
i,k(u)NV

j,l(v),

(u, v) ∈ [uk−1, un+1]× [vl−1, vm+1].

1The blending function λ(u) should have the following properties: (i) λ(0) = 0 and
λ(1) = 1 (ii) λ(k)(0) = 0 and λ(k)(1) = 0 for some k = 1

2.3. SURFACE FAIRING METHODS 27

(a) Isophote map.

(b) Mean map.

Figure 2.5: Local fairing of a Fiat car panel.

28 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

Then the u-isocurve for a �xed v0 parameter can be written as

Cv0(u) =
n∑

i=0

(
m∑

j=0

NV
j,l(v0)Pij

)
NU

i,k(u),

i.e., a B-spline curve with the same knot vector U , and with control points∑m
j=0N

V
j,l(v0)Pij. We can apply steps 1�4 of the curve fairing method to get

the faired points. These points can be collected to form two point clouds (one

from the u-parametric and one from the v-parametric curves), both of them

retaining the original constraints by the four boundaries. Blending them and

�tting a surface on the blended point set will result in a fair surface.

Figure 2.5 shows a local fairing on a Fiat car body part. The region on

the right side of the surface was selected for fairing, and as the isophote lines

show, the distribution of the curvature has become much more smooth due

to fairing. Other regions were not a�ected (substantially).

2.3.2 Extension by PDE

Even though not as versatile as curvatures, parametric second derivatives

still re�ect surface quality. Using the same pattern as before, target second

derivatives guu and gvv can be computed on a uniform grid, which leads to

the �nite di�erence solution of the Poisson-equation

∂2Ŝ(u, v)

∂u2
+
∂2Ŝ(u, v)

∂v2
= ∆target(u, v),

where ∆target = guu + gvv is the target Laplacian. In most applications, the

edge curves of the surface should remain constant, which gives us the Dirichlet

boundary conditions Ŝ(u, v) = S(u, v), when either u or v is extremal.

The equation can be approximated by Gauss�Seidel iteration [28]:

Ŝn+1(uj, vk) =
1

4

(
Ŝn+1(uj, vk−1) + Ŝn+1(uj−1, vk)

+Ŝn(uj, vk+1) + Ŝn(uj+1, vk)
)

−h2∆target(uj, vk),

2.3. SURFACE FAIRING METHODS 29

Figure 2.6: Surface fairing by PDE-based extension of the target curvature
algorithm.

30 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

where h is the parameter di�erence between grid points. Sampled points

of the original surface can be used as starting values for the iteration. The

equation above can be supplemented by deviation control, as suggested ear-

lier. Introducing the notation P n
jk = Ŝn(uj, vk), the original points can be

written as P 0
jk. Then the required post-processing step is

P n+1
jk ← P 0

jk + v

(
1−

(
‖v‖
α

)2
)
,

where v = P n+1
jk − P 0

jk and α is the maximum deviation. Fig. 2.6 shows an

example.

2.3.3 Fairing by Curvature Approximation

While the algorithm in the previous section is fast and simple, it uses second

derivatives as an approximation of curvature. This is a popular practice,

but we can do better. Given a reference surface R and a twice di�erentiable

scalar function h̃ de�ned on it, Greiner [10] shows that the Hessian matrix

of h = h̃ ◦R is

HessR(h) =

(∑
l

gkl(∂j∂lh−
∑

i

∂ihΓi
jl)

)
kj

,

where ∂i is the partial derivative by the ith argument, (gij) is the inverse

of the �rst fundamental form of R, and Γi
jl =

∑
m g

im 〈∂j∂lR, ∂mR〉 (every
index can take the values 1 and 2). Note that both Γ and g can be computed

in advance. The paper also shows that if we use the coordinate functions Rc

(c ∈ [1 . . . 3]) as h, we have

HessR(Rc) =
1

EG− F 2

[
G −F
−F E

][
L M

M N

]
nc,

where n is the surface normal. This has several nice properties, for example

it is easy to see that

2.3. SURFACE FAIRING METHODS 31

∑
c

trace (HessR(Rc))
2 = (κR

1 + κR
2)2,∑

c

det (HessR(Rc)) = κR
1 · κR

2 ,

where κR
1 and κR

2 are the principal curvatures of R. The claim is that using

Sc instead of Rc will result in good approximations of the curvatures of S:∑
c

trace (HessR(Sc))
2 ≈ (κS

1 + κS
2)2,∑

c

det (HessR(Sc)) ≈ κS
1 · κS

2 .

The reader can consult the original paper [10] for more details.

In our case, we already have a very good reference surface � the original

surface itself. Following the mechanism of the curve fairing algorithm, the

goal is to set up a target curvature and �nd a surface with similar curvature.

The general scheme would then be as follows:

1. Sample the original surface at intervals.

2. Compute Γ and g in these positions.

3. Set up a target curvature.

4. Minimize the deviation from the target curvature.

We can write up an equation system that depends linearly on the control

points of S, so it will be easy to minimize. One option is to create a target

mean curvature by smoothing the traces of Hessian matrices in the sampled

points. Another alternative is to average every element of the Hessian matri-

ces over the sampled points. Since the computation of the Hessian matrix by

the control points is linear, these lead to overde�ned linear equation systems,

that can be solved in a least-squares sense. An example is shown in Fig. 2.7.

The advantage of this method is that it is independent of the parametric di-

32 CHAPTER 2. FAIRING BASED ON TARGET CURVATURE

Figure 2.7: Isophotes of a car body panel before (left) and after (right) fairing
by the curvature approximation method

rections, yet works with the surface directly. However, we have to minimize a

fairly large equation system, which makes its computational cost quite high.

Conclusions

Fast and local algorithms were introduced for both curve and surface fairing,

involving a parameterization-independent fairness measure based on a target

curvature. E�ciency was achieved by integration and �tting instead of the

conventional iterative approaches. The fairing method was also extended to

surfaces in three di�erent ways: (i) �tting a surface on the accumulated points

of individual isocurve fairing, (ii) solving a simpli�ed problem as a PDE, and

(iii) using curvature approximation. Each of the algorithms has its strengths

and weaknesses, but the examples show that all of them considerably enhance

surface quality.

Chapter 3

Hierarchical Fairing with

Constraints

The previous chapter presented fairing methods that work well when applied

to primary surfaces independently of their environment; however, when a

complete object composed of many connected surfaces needs to be faired,

not only the smoothing of the individual surfaces is needed, but the hierar-

chy of surfaces must be taken into account as well. The fairing of dependent

connection surfaces, such as �llets or corner patches, thus poses a new prob-

lem.

Various methods have been published that deal with this issue using the

variational paradigm (see for example Lai et al. [20] or Hsu et al. [16]), but

a solution to constrained fairing of multiple surfaces in the post-processing

context, which seems to be more suitable for Digital Shape Reconstruction,

is not known to the author. This chapter aims to �ll this need.

According to functional decomposition described in [40], a complex CAD

model can be broken down into a set of surfaces with continuity constraints.

Typically there is a hierarchy comprising (i) primary surfaces (ii) connecting

surfaces, such as �llets, and (iii) corner patches. In the DSR context, surface

reconstruction is also performed accordingly, providing continuity constraints

from the previous phases. Primary surfaces are independent; �llets smoothly

connect to two primary surfaces, and corner patches can be joined to several

33

34 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

Figure 3.1: Primaries, connections, corner patches.

surfaces up in the hierarchy � including not only �llets, but primaries as

well, sharing common boundaries with corner patches at T-node junctions

or when setbacks are applied [41], see Fig. 3.1.

We would like to perform fairing in a hierarchical order, �rst fairing the

primary surfaces, then �llets, and �nally corner patches. In order to achieve

this, we need algorithms that create fair surfaces while retaining smooth con-

nections to the adjacent surface elements. For �llets, smooth connection to

two primary surfaces must be satis�ed; for corner patches, smooth connection

to n surrounding surface elements is needed. Our goal is to deal primarily

with the latter problem of constrained fairing, which includes a solution for

�llets, as well [32, 33].

A general observation is that while primary surfaces are relatively large

and are supposed to preserve the original design intent, �llets and corner

patches, being much smaller (and the related measured data points less ac-

curate), are more lenient about deviation in favor of ensuring continuity and

fairness.

While there are several papers in the literature that deal with continu-

ity constraints or surface fairing, their connection has not been investigated

3.1. OVERVIEW 35

thoroughly. Generally, when an individual surface is faired, the original ac-

curacy along the surface boundaries is lost; when continuity constraints are

satis�ed, often undesirable curvature artifacts can be observed in the interior

of the surface. Our goal is to accomplish both of these seemingly con�ict-

ing tasks: maintain continuity and provide fair surfaces simultaneously in the

post-processing context, which makes it possible to perfect dependent surface

geometries of a complex CAD model. The connections between the adjacent

surface elements have a large in�uence on the overall quality of the model,

and at least numerical (tolerance-driven) G2 continuity is recommended.

3.1 Overview

We can break this problem into two separate subproblems. The �rst one is

to ensure continuous connections, i.e., to tweak a surface S to match �xed

master surfaces Mi by numerical G1 and G2 constraints. The second one is

to perform the actual fairing, while retaining the continuity constraints to

the master surfaces.

Concerning curvature continuity constraints, Pegna andWolter [26] proved

the Linkage Curve Theorem, which gives a necessary and su�cient condition

for G2 continuity between two surfaces that share common tangent planes.

The theorem states the following (as rephrased in Hermann et al. [14], who

also extended the theorem to Gn continuity):

Two surfaces tangent along a C1-smooth linkage curve1 are cur-

vature continuous if and only if at every point of the linkage

curve, their normal curvature agrees for an arbitrary direction

other than the tangent to the linkage curve.

This is the basis of the G2 algorithm in Section 3.2.2. As for the fairing of

the surface interior, slightly modi�ed variations of the algorithms presented

in the previous chapter will be applied (see Section 3.3).

A combination of the above two types of algorithms yields a solution to

our main problem � a work�ow that reaches the above goal step-by-step.

1i.e., the common boundary curve

36 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

Assume that the surface we want to modify is connected to n neighbor-

ing surfaces up in the hierarchy (master surfaces) with C0 continuity. The

process (described in detail in Section 3.4) uses the two algorithms in an al-

ternating manner: the �rst sets geometric continuity to the master surfaces

(enhancing C0 to G1 continuity in the �rst phase and G1 to G2 continu-

ity in the second), and the other performs fairing retaining the continuity

already achieved. The alternation with fairing is essential, because the conti-

nuity constraints may crease the surface near the sides, thus harming surface

quality.

For the extension to n-sided corner patches (see Section 3.5), bi-parametric

surface algorithms cannot be used. Instead, a mesh-based fairing algorithm

is applied, described by Kobbelt [18], where the n-sided surface region is

approximated by a mesh and discrete fairing is applied. For a completely

di�erent approach on n-sided patches using only one continuous surface, the

reader is referred to Chapter 4.

3.2 Continuity Constraints

A B-spline surface S(u, v) is de�ned by means of its control points Pij (i ∈
[0 . . . n], j ∈ [0 . . .m]) and its knot vectors U and V :

S(u, v) =
n∑

i=0

m∑
j=0

PijN
U,p
i (u)NV,q

j (v),

where p and q are the degrees of the surface in the u and v directions,

respectively.

The four boundaries of the surface are de�ned by the outermost control

points � P0j, Pnj, Pi0 and Pim, respectively (i ∈ [0 . . . n], j ∈ [0 . . .m]). In

this context we call these together as the positional frame.

Let us assume hereinafter that the outermost control points are �xed.

The tangent planes at the points of the boundaries are indirectly determined

by the �rst cross-boundary derivatives, i.e., by the inner control points P1j,

P(n−1)j, Pi1 and Pi(m−1), respectively (i ∈ [1 . . . n− 1], j ∈ [1 . . .m− 1]). We

3.2. CONTINUITY CONSTRAINTS 37

call these control points together the tangential frame.

Finally, assume that control points of the positional and tangential frames

are �xed. Then the surface curvatures at the points of the boundaries are

indirectly determined by the second cross-boundary derivatives, i.e., by the

inner control points P2j, P(n−2)j, Pi2 and Pi(m−2), respectively (i ∈ [2 . . . n−2],

j ∈ [2 . . .m− 2]). We call these control points together the curvature frame.

These frames are depicted in Figure 3.2.

It is also well-known, that when we enforce G1 continuity independently

for the individual boundaries, a so-called twist compatibility condition must

be satis�ed for the mixed partial derivatives, which are indirectly determined

by the twist control points P11, P1(m−1), P(n−1)1 and P(n−1)(m−1). After we

enforce G2 continuity for the individual boundaries, a similar compatibil-

ity condition must be satis�ed to tweak the inner twist control points P22,

P2(m−2), P(n−2)2 and P(n−2)(m−2).

The following methods set continuity between two B-spline surfaces M

(master) and S (slave) by modifying the appropriate frame of S. The general

idea is to draw up the equations for a number of sampled parameter points

along the border and minimize the least-squares error of the equation system.

For the sake of simplicity, the algorithms will be explained on a per side basis.

The twists, however, need special attention, and they will be dealt with at

the end of this section.

3.2.1 G1 Continuity

Let M and S be joined (without loss of generality) along the u = umin

parameter line with C0 continuity. The goal is to modify the corresponding

side of the tangential frame, i.e., the second control row of S, such that the

two surfaces will have numerical G1 continuity.

Taking some sampled parameters vk (k ∈ [1 . . . K]) along the common

boundary, let the normal vectors at these (u, vk) points of the master surface

be denoted by nk. If displacement vectors wj are added to the control points

38 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

Figure 3.2: Frames of a biparametric surface: positional (red), tangential
(green) and curvature (blue)

P1j (j ∈ [1 . . .m− 1]), they will modify the original tangents ek as follows:

êk = ek +N
U,p,(1)
1 (u)

m−1∑
j=1

NV,q
j (vk)wj (3.1)

= ek +
m−1∑
j=1

ck,jwj. (3.2)

Since it is better to avoid irrelevant control point movements, deviation

should be minimized only in the surface normal direction. This leads to

êk = ek − nk(eknk). (3.3)

Subtracting ek from (3.2) and (3.3) gives the linear equation system Ax = b,

where

A =

c11 c12 · · · c1(m−1)

c21 c22 · · · c2(m−1)

...
...

. . .
...

cK1 cK2 . . . cK(m−1)

 ,

3.2. CONTINUITY CONSTRAINTS 39

x =

w1

w2
...

wm−1

 , b =

−n1(e1n1)

−n2(e2n2)
...

−nK(eKnK)

 .
There are K equations and m− 1 unknowns. Solving the least-square equa-

tion (Ax− b)2 = 0 leads to a linear system of (ATA)x = AT b.

3.2.2 G2 Continuity

Consider the same assumptions as in theG1 case, but now also with numerical

G1 connection. Take K parameter points from the v domain: vk, 1 ≤ k ≤ K.

For every vk, calculate the normal curvature κM
k of M at (umin, vk) in the u

direction. If S is modi�ed in a way that its normal curvature in the u direction

is the same as κM
k , the Linkage Curve Theorem ensures G2 continuity at

(umin, vk).

The normal curvature of a surface at (u, v) in some d direction can be

calculated as:

κ(λ) =
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
,

where E, F , G and L, M , N are the coe�cients of the �rst and second

fundamental forms, respectively; λ = dv

du
and d = duSu +dvSv. In the special

cases where d is the u or v parametric direction, this is simpli�ed into L/E

and N/G, respectively [6].

3.2.2.1 Minimization

The curvature of the surface curve Ck(u) = S(u, vk) can be used instead

of directly optimizing for surface curvature. This results in much simpler

equations, as it will be explained below. Meusnier's theorem shows that

at a given point, the curvature κC of a surface curve C and the normal

curvature κ of a surface S in the tangent direction of C have the following

relationship [39]:

κ = κC cos θ =
‖C ′ × C ′′‖
‖C ′‖3 cos θ =

〈C ′′, n〉
‖C ′‖2 ,

40 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

where n =
Su×Sv

‖Su×Sv‖
is the surface normal and θ is the angle between n and

the curve normal (C ′ × C ′′)× C ′.

Consequently, the equations to be solved have the form

〈C ′′k (umin), nk〉
‖C ′k(umin)‖2 = κM

k . (3.4)

Since

Ck(u) = S(u, vk) =
n∑

i=0

NU,p
i (u)

(
m∑

j=0

NV,q
j (vk)Pij

)

=
n∑

i=0

NU,p
i (u)P̂i,

the �rst and second derivatives at the end are

C ′k(umin) =
p

up+1 − u1

(P̂1 − P̂0),

C ′′k (umin) =
p− 1

up+1 − u2

(
p

up+2 − u2

(P̂2 − P̂1)− p

up+1 − u1

(P̂1 − P̂0)

)
,

see [27] (assuming that u0 = u1 = · · · = up = umin).

If we want to modify the P2j control point by a vector dj, we can refor-

mulate Eq. 3.4 as

∆κk ‖C ′k(umin)‖2 (up+1 − u2)(up+2 − u2)

p(p− 1)
=

m−2∑
j=2

NV,q
j (vk)

〈
dj, nk

〉
, (3.5)

where ∆κk = κM
k − κS

k . Note that the second half of C ′′k is eliminated in the

scalar product by the (perpendicular) surface normal.

The following two sections propose di�erent solutions for this equation

system. In the �rst one, in order to avoid irrevelant control point movements,

the P2j points are only allowed to move in an outward direction (wj for P2j).

In the second one, the requirement is that the sum of the squared deviations

should be minimal.

3.2. CONTINUITY CONSTRAINTS 41

Figure 3.3: Outward direction

3.2.2.2 Solution by Fixed Directions

An easy and intuitive choice for outward directions is to get the cross product

of the di�erence of the neighboring control points (Fig. 3.3), i.e., wj = (P3j−
P1j) × (P2(j+1) − P2(j−1)). De�ning the deviation vectors dj as ξjwj and

introducing the constants αkj and βk, Eq. 3.5 can be rewritten as βk =∑m−2
j=2 αkjξj.

This leads to the overde�ned equation system Ax = b:

A =

α12 α13 · · · α1(m−2)

α22 α23 · · · α2(m−2)

...
...

. . .
...

αK2 αK3 . . . αK(m−2)

 ,

x =

ξ2

ξ3

...

ξm−2

 , b =

β1

β2

...

βK

 .
Solving the (ATA)x = AT b equation results in a least-squares approximation,

as earlier.

42 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

3.2.2.3 Solution by Minimal Deviation

The equations can also be solved while minimizing the squared deviation of

the P̂2 control point of Ck from its original position, by requiring that it

should change only in the nk direction. This means that Eq. 3.5 becomes

βknk =
m−2∑
j=2

NV,q
j (vk)dj =

m−2∑
j=2

γkjdj.

The equation system is now Ax = b, where

A =

γ12 γ13 · · · γ1(m−2)

γ22 γ23 . . . γ2(m−2)

...
...

. . .
...

γK2 γK3 . . . γK(m−2)

 ,

x =

d2

d3
...

dm−2

 , b =

β1n1

β2n2
...

βKnK

 .

As before, (ATA)x = AT b gives a least-squares approximation.

3.2.3 Twists

Every twist (or inner twist) control point of a frame has two values coming

from the independent side constraints. In order to get a valid B-spline, a

single twist control point is needed. There is a range of methods how to

determine a common value, though experience shows, that the two candi-

date control points coming from the adjacent boundaries generally lie very

close to each other, so a simple averaging works well. Having tweaked the

twist control points, we can repeat the continuity setting algorithms, now

constraining only the inner j ∈ [2 . . .m − 2] control points for G1 and the

j ∈ [3 . . .m−3] control points for G2 continuity, respectively, which will yield

better frames that comprise the new twist values.

3.3. FAIRING ALGORITHMS 43

Another option is to solve the constraint equations for all sides as one

large system, in which the incompatible twist conditions appear with equal

weights.

3.3 Fairing Algorithms

There is one extra requirement for the surface fairing algorithms used here:

they should be able to preserve the �rst k frames (k = 1 . . . 3). For a control

point-based method like the KRR algorithm, this is trivially achieved by

limiting the set of modi�able control points. The curvature approximation

based method presented in Section 2.3.3 also uses a linear equation system

on the control points, so it su�ces to pin down some points (and thus reduce

the number of variables).

The isocurve and PDE extensions (Sections 2.3.1 and 2.3.2), on the other

hand, use surface �tting as a �nal step, so the main modi�cations must be

embedded into the surface �tting algorithm. There are several ways to �t

a surface with partially �xed geometry, see e.g. [44]. Additionally, some

adjustments in the mesh generation process may also be necessary for better

results. In the isocurve-based extension, constraining k end control points of

the isocurves helps in creating a consistent mesh. For the same reason, the

�rst few triangle frames should also be �xed in the PDE extension.

With these modi�ed algorithms, and the continuity setting methods pro-

posed in the previous section, we are now ready to sketch out the constrained

fairing process.

3.4 Fairing Four-sided Patches

The algorithm for fairing and setting continuity constraints proceeds in the

following way:

1. Insert some knots into the surface, if it has too few control points.

2. Fair the surface, while retaining C0 continuity for each boundary, i.e.,

only control points within the positional frame are used for fairing.

44 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

Figure 3.4: Five-sided corner patch consisting of �ve quadrilateral surfaces

3. Fix the positional frame and enforce G1 continuity for each boundary.

4. Fair the surface, while retaining G1 continuity, i.e., only control points

within the tangential frame are used for fairing.

5. Fix the tangential frame and enforce G2 continuity for each boundary.

6. Fair the surface, while retaining G2 continuity, i.e., only control points

within the curvature frame are used for fairing.

To sum it up, the sequence is always alternating, i.e.: (i) constrain, (ii) apply

fairing, until a faired G2 surface is achieved.

3.5 Extension to n-sided Patches

There are corner patches with three or more than four (usually �ve or six)

connecting surfaces. The simplest representation of these is based on the

so-called central split, where n quadrilateral surfaces are stitched together,

see Fig. 3.4 for a �ve-sided example.

The main di�culty here is that corner patches consist of more than one

biparametric surface, so continuity has to be ensured both along the external

3.5. EXTENSION TO N -SIDED PATCHES 45

boundaries and the internal subdividing curves between the quadrilaterals.

Moreover, for multi-surface n-sided regions the previously mentioned fairing

methods (and incidentally any other fairing method known to the author)

cannot be used.

3.5.1 Extension of the Algorithm

In order to cope with these di�culties, the procedure presented in Section

3.4 is modi�ed as follows:

1. Global fairing of the quadrilaterals (retaining C0 or G1 continuity on

the perimeter).

2. Enforce G1 continuity on the perimeter and between the quadrilaterals.

3. Local fairing of each quadrilateral, retaining G1 continuity.

4. Enforce G2 continuity on the perimeter and between the quadrilaterals.

5. Local fairing of each quadrilateral, retaining G2 continuity.

The �rst step aims at creating a good base for further operations. It can be

omitted if the original surface has adequate quality. Unlike in the four-sided

case, the �rst step here needs special attention, since multiple surfaces need

to be processed simultaneously. A mesh-based fairing seems to be a natural

approach.

3.5.2 Mesh-based Fairing

In order to avoid the parameterization problems, the corner patch should

�rst be discretized, resulting in a triangle mesh as shown in Fig. 3.5. The

actual fairing is done by a method suggested by Kobbelt [18], inheriting G1

continuity at the boundaries. Finally, the surfaces can be �tted back using

the points of the faired mesh. Although this algorithm, due to precision loss,

may be inferior to the others, it creates a good shape generally and is easy to

use regardless of the number of quadrilaterals involved. Fig. 3.6 shows how

the re�ection lines change on the mesh after fairing.

46 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

Figure 3.5: Triangle mesh of a �ve-sided corner patch

A smooth mesh can also be generated from sampled points of a trans�nite

interpolation surface (see the next chapter), when all boundary constraints

are well-de�ned.

3.6 Examples

Figures 3.7 and 3.8 both show the e�ect of constrained fairing for four-sided

corner patches. In these cases, the central surface is relatively simple; the

original (a) has reasonable isophotes, but the isophote stripes break when

they reach the boundaries (only G1 continuity). After constrained fairing

(b) the images show that numerical G2 continuity has been achieved and

fairing also nicely a�ected the interior without changing the master surfaces.

Figure 3.9 also shows a similar example, but here the corner patch joins

the �llets with only C0 continuity (the isophote lines do not match at the

boundaries). In the �rst step, continuity is enhanced to G1 (image on the

right) which was further enhanced to G2 in the second step (bottom image).

The smoothness of the surface is due to the fairing at the end of each step,

as described above.

3.6. EXAMPLES 47

(a) Before fairing

(b) After fairing

Figure 3.6: Re�ection lines on the corner mesh

48 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

(a) Before fairing (b) After fairing

Figure 3.7: Fairing an X-node (junction of four �llets)

We have a di�erent case in Figure 3.10. Here the original corner patch

already had numerical G2 that needed only very minor changes. On the

other hand, fairing increased the overall surface quality very much, leaving

the connectivity intact.

Finally Figure 3.11 shows the stages of hierarchical fairing: �rst the con-

necting surfaces were faired (independently), followed by the corner patch,

where continuity constraints were also taken into account.

Conclusions

A new approach was presented for fairing surface elements of complex CAD

models in order to support digital shape reconstruction based on measured

data. The process combines fairing and continuity setting algorithms to

perfect functionally decomposed surfaces following a hierarchical order.

Nonetheless, there is still room for future research and enhancements. For

example, in the n-sided corner patch case, the discrete fairing step may be

replaced by some continuous fairing technique. Another idea is to fair func-

tionally decomposed surfaces locally, i.e., using selected portions of adjacent

primaries, connections and corner patches and then apply hierarchical fairing

which will a�ect only the selected areas.

3.6. EXAMPLES 49

(a) Before fairing

(b) After fairing

Figure 3.8: Fairing another X-node

50 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

(a) Before fairing (C0) (b) Middle phase (G1)

(c) Final result (G2, faired)

Figure 3.9: Fairing a third X-node

3.6. EXAMPLES 51

(a) Before fairing

(b) After fairing

Figure 3.10: Fairing a �ve-sided corner patch.

52 CHAPTER 3. HIERARCHICAL FAIRING WITH CONSTRAINTS

(a
)
B
efo

re
fa
irin

g
(b
)
F
a
irin

g
th
e
co
n
n
ectin

g
su
rfa

ces

(c)
F
a
irin

g
th
e
co
rn
er

p
a
tch

F
igu

re
3.11:

T
w
o
levels

of
fairin

g

Chapter 4

Trans�nite n-sided Surfaces

One of the major problems in Computer-Aided Geometric Design (CAGD)

is to create mathematical representations for complex free-form objects com-

posed of several smoothly connected surfaces. An intuitive solution is the

curvenet-based design paradigm, where the designer de�nes the feature curves

of the object, then these are semi-automatically interpolated by surfaces. The

feature curves may come from 2D manual sketches (see e.g. [19]) or directly

drawn in 3D (as in [1]).

It is di�cult to apply traditional parametric surfacing techniques in this

situation, due to the lack of interior data points. General topology surfaces

using recursive subdivision methods [2] are also inconvenient, as interpolating

positional and tangential constraints at the boundaries is hardly possible.

Coons patches [4, 6], on the other hand, provide a viable solution for four-

sided curve networks, since they are de�ned by boundary curves and their

cross-derivatives.

Unfortunately, while the majority of surface patches in a model is four-

sided, almost all industrial objects contain general n-sided patches, as well.

Most frequently three-, �ve- or six-sided patches are needed; however, one-

or two-sided patches may also occur in practical design. Conventional meth-

ods for treating these surfaces include trimming, where a larger quadrilateral

patch is created and then it is intersected with given boundary curves, and

splitting [15], where multiple four-sided surfaces are stitched together to rep-

53

54 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

resent one n-sided patch, as explained in Section 3.5.

It is easy to see that splitting is sub-optimal: any modi�cation of the

boundary conditions forces the (non-trivial) recomputation of the subdivi-

sion curves, the continuity constraints and fairness in the interior (for example

via the algorithm introduced in Section 3.5), so design changes can hardly be

expected to be executed in real-time. The problem with trimming is much

more subtle: �nding an adequate quadrilateral requires a good parameteri-

zation, and depending on the nature of the boundary curves, the resulting

surface may have sudden curvature changes. These can only be prevented

by variational fairing methods, which are computationally demanding. Also,

both of the above approaches lack �exibility.

The real solution to this problem is the multi-sided generalization of the

Coons patch, called trans�nite surface interpolation. This contains several

separate subproblems, such as (i) constructing interpolants, (ii) �nding suit-

able domain polygons, (iii) de�ning parameterizations that map the domains

of the interpolants onto the n-sided polygonal domain, and (iv) designing

blending functions to combine the interpolant surfaces. Trans�nite surface

interpolation is a well-researched area of CAGD, originating from the late

1960s, and thus each of these tasks have numerous variations. For a com-

plete overview of the subject, the reader is referred to [37, 22], and also the

recent review in [42]. We will examine some of the major variants in Sec-

tion 4.1. Note that one- and two-sided surfaces need special attention, since

most of these methods need at least three sides. One possible construction

for these has been described recently in [43], along with techniques for more

precise interior control.

In the subsequent sections new techniques are presented to construct non-

regular domains (Sec. 4.2) and special line-sweep parameterizations (Sec.

4.3). Then in Section 4.4 a new trans�nite surface representation is intro-

duced that can be regarded as the natural multi-sided generalization of the

Coons patch. In Section 4.5 we propose the use of curved side interpolants,

having de�nite bene�ts over the usual linear ribbons, and in Section 4.6

another new interpolation scheme is de�ned that is based on these curved

interpolants. A few test results conclude the chapter in Section 4.7.

4.1. PREVIOUS WORK 55

4.1 Previous Work

In this section we will review the construction of Coons patches and will

rewrite it in a form that is easier to generalize, using linear ribbons. We will

also mention two multi-sided surface formulations that were in�uential to the

work presented in this chapter.

4.1.1 Reformulating the Coons Patch

Let us assume that we have a four-sided surface patch S parameterized in

the (u, v) plane (u, v ∈ [0, 1]). Given positional side constraints S(u, 0),

S(u, 1), S(0, v), S(1, v) and tangential (cross-derivative) constraints Sv(u, 0),

Sv(u, 1), Su(0, v), Su(1, v), the original Coons patch can be written as

U =
[
α0(u) β0(u) α1(u) β1(u)

]
,

V =
[
α0(v) β0(v) α1(v) β1(v)

]
,

Su =
[
S(u, 0) Sv(u, 0) S(u, 1) Sv(u, 1)

]
,

Sv =
[
S(0, v) Su(0, v) S(1, v) Su(1, v)

]
,

Suv =

S(0, 0) Su(0, 0) S(1, 0) Su(1, 0)

Sv(0, 0) Suv(0, 0) Sv(1, 0) Suv(1, 0)

S(0, 1) Su(0, 1) S(1, 1) Su(1, 1)

Sv(0, 1) Suv(0, 1) Sv(1, 1) Suv(1, 1)

 ,
S(u, v) = V (Su)T + SvUT − V SuvUT .

This is the well-known Boolean sum formulation [6], where α0, α1, β0, β1 are

the Hermite blending functions

α0(t) = 2t3 − 3t2 + 1, α1(t) = −2t3 + 3t2,

β0(t) = t3 − 2t2 + t, β1(t) = t3 − t2.

In order to reformulate the above de�nition on a per-side basis, we will use

cyclic indices (with 1 coming after 4), and introduce so-called side parameters,

56 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.1: Domain of a Coons patch using side-based parameterization

si = si(u, v), associated with the i-th side of the domain, taking the values u,

v, 1−u and 1−v, as appropriate (see Fig. 4.1). Then, denoting the positional
and tangential constraints by Pi(si) and Ti(si), respectively, as well as using

Wi,i−1 for the twist vector, the Coons patch can be rewritten as

S(u, v) =
4∑

i=1

[
α0(si+1) β0(si+1)

] [Pi(si)

Ti(si)

]

−
4∑

i=1

[
α0(si+1) β0(si+1)

] [Pi(0) Ti−1(1)

Ti(0) Wi,i−1

][
α0(si)

β0(si)

]
.

We assume that twist vector compatibility is ensured, i.e.,

Wi,i−1 :=
∂

∂si

Ti(0) = − ∂

∂si−1

Ti−1(1).

For contradicting boundary constraints, this can be resolved by Gregory's

rational twists (see [9, 6]).

This formulation can be further simpli�ed, if we replace the tangential

blending with linear interpolants or ribbons :

Ri(si, di) = Pi(si) + diTi(si).

Here we introduced another local parameter, the so-called distance parameter

4.1. PREVIOUS WORK 57

Figure 4.2: Coons patch using the original (left) and the ribbon-based for-
mulation (right), showing fairly similar mean curvature maps and constant
parameter lines.

di = di(u, v), that measures some kind of distance from the i-th side. In this

four-sided case di(u, v) = si+1(u, v) is a simple choice. The resulting patch

becomes

S(u, v) =
4∑

i=1

Ri(si, di)α0(di)−
4∑

i=1

Qi,i−1(si, si−1)α0(di)α0(si), (4.1)

where Qi,i−1 is a corner correction patch given by

Qi,i−1(si, si−1) = Pi(0) + (1− si−1)Ti(0) + siTi−1(1) + si(1− si−1)Wi,i−1.

This will not be identical to the Coons patch, but it is a very similar construc-

tion (see Fig. 4.2) that trivially satis�es all the boundary constraints. This

formulation will be the basis of the generalization presented in Section 4.4.

58 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

4.1.2 Traditional Multi-sided Surfaces

We can interpret the same problem for an arbitrary number of boundary

curves. Given n three-dimensional curves Pi(si), 1 ≤ i ≤ n, and cross-

derivatives Ti(si) along these curves, we want to construct an n-sided patch

that interpolates these boundary curves and derivatives. For this, we will

need a domain polygon in the parameter plane. The generation of domain

polygons is explained in detail in Section 4.2. We will also need a param-

eterization scheme that transforms the (u, v) coordinates of the parameter

plane into local parameters of the individual boundary curves. These will be

explored in Section 4.3.

The rest of this section concentrates on how these curves and tangents

can be combined to create an interpolating patch, and what kind of blending

functions can be used. Note that we continue to use cyclic indices in this

chapter (e.g. i− 1 for i = 1 is n, and conversely, i+ 1 for i = n is 1).

Charrot and Gregory [3] proposed an n-sided patch based on corner in-

terpolants, i.e., surfaces that interpolate two consecutive boundary curves,

de�ned as

Rcorner
i,i−1 (si, si−1) = Pi(si) + (1− si−1)Ti(si) + Pi−1(si−1) + siTi−1(si−1)

− Pi(0)− (1− si−1)Ti(0)− siTi−1(1)− (1− si−1)siWi,i−1.

It is easy to see that these surfaces interpolate the i-th and (i − 1)-th sides

and their cross-derivatives. A similar technique will be introduced in Section

4.5 for interpolating three sides. The Gregory patch is constructed in the

following way:

Scorner(u, v) =
n∑

i=1

Rcorner
i,i−1 (si(u, v), si−1(u, v)) ·Bi,i−1(d1(u, v), . . . , dn(u, v)).

Here the blending function is

Bi,i−1(d1, . . . , dn) =

∏
k/∈{i,i−1} d

2
k∑

l

∏
k/∈{l,l−1} d

2
k

=
D2

i,i−1∑
l D

2
l,l−1

,

4.2. DOMAIN CONSTRUCTIONS 59

with the notation De
i1...ik

=
∏

j /∈{i1...ik} d
e
j . This blending function will be used

in Sec. 4.4.2 for the generalized Coons patch. Note that the di parameters in

an n-sided polygon are generally not equal to si+1 (as we have seen for rectan-

gles in the previous section), but can be independent �distance� parameters.

For details, see Sections 4.3 and 4.4.3.

Kato [17] also used the linear side interpolants Ri introduced above to

de�ne a patch as

Sside(u, v) =
n∑

i=1

Ri(si(u, v), di(u, v)) ·Bside
i (d1(u, v), . . . , dn(u, v)),

where the blending function is

Bside
i (d1, . . . , dn) =

(1− d2
i)/d2

i∑
j(1− d2

j)/d2
j

.

An alternative blending function for this patch, proposed by several authors

(for example [42]), is

Bside
i (d1, . . . , dn) =

1/d2
i∑

j 1/d2
j

=
D2

i∑
j D

2
j

.

Both variants have the drawback of being singular in the corners.

In the following two sections we will present important enhancements to

these patches in terms of domain construction and parameterization.

4.2 Domain Constructions

One particularly neglected problem in trans�nite surface interpolation is the

construction of a good polygonal domain. It is a widely accepted principle in

CAGD, that the parameterization of the domain and the mapped 3D objects

should have a �similar� shape. In other words, the domain should be mapped

into 3D with minimal distortion. For example, non-uniform B-splines are

de�ned in this fashion, thus avoiding undesirable overshoots.

Most papers in the literature only make use of regular polygons, but

60 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.3: Parameterization with regular (left) and non-regular (right) do-
mains.

Figure 4.4: Mean maps of a surface with regular (top) and non-regular (bot-
tom) domain polygon.

our experience shows that the use of non-regular domains instead of regular

ones yields signi�cant surface quality improvements for uneven boundary

conditions. Compare the two parameterizations of a planar patch in Figure

4.3, shown by spider-net curves (constant parameter lines parallel to domain

sides). Observe the unnatural bulge at the short side in the regular case. Also

compare the mean maps of another surface, using regular and non-regular

domains, in Fig. 4.4.

Let Ω denote a convex domain in the (u, v) plane, Γ its boundary, and

pi = (ui, vi), i = 1, . . . , n the vertices to be determined. Index i runs in

a counterclockwise order (Fig. 4.5). Denote the arc lengths of the given

4.2. DOMAIN CONSTRUCTIONS 61

Figure 4.5: Circular polygonal domain I.

three-dimensional boundary curves by Li, and the angles between the end

tangents of the (i− 1)-th and i-th boundaries by φi. Denoting the sides and

the angles of the domain by li and αi, respectively, we seek to minimize the

squared deviation of the chord lengths and the angles, i.e.,
∑

i(li−clengthLi)
2+∑

i(αi−cangleφi)
2, where clength and cangle are properly chosen constants. This

is a non-linear problem, but simple heuristic methods work well in practice.

Three such algorithms are proposed below.

4.2.1 Arcs by Arc Lengths

The simplest method is to place the domain vertices on the perimeter of a

unit circle proportionally to the arc lengths (inscribed polygon). Place the

�rst vertex on the u axis, and the subsequent ones (i = 2, . . . , n−1) at angle

βi = 2π ·
∑i−1

k=1 Lk∑n
k=1 Lk

.

This is depicted in Figure 4.5.

4.2.2 Sides by Arc Lengths

For a better solution, instead of central angles, we propose to set the sides

of the polygon proportional to the arc lengths of the boundaries. As Fig. 4.6

62 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.6: Circular polygonal domain II.

shows, two cases need to be distinguished: in case A, the center point of

the circle is contained in the convex hull (Fig. 4.6a), while in case B, it lies

outside (Fig. 4.6b).

Now, take a su�ciently large circle with radius R, and place the chord

lengths Li onto the circle one by one, placing an endpoint of the longest

side (here denoted by L1) onto the u axis (Fig. 4.6c). Then start decreasing

the radius, and let the chord endpoints slide towards the other end, i.e., in

the �gure p∗1 moves towards p1. In case A, this will be successful when the

central half-angles of the chords satisfy
∑

arccos Li

2R
= π, assuming L1 < 2R;

otherwise, at one instant of the circle shrinking process, 2R becomes equal to

L1 without closing the loop. Then radius R needs to start growing again (case

B), until we �nd an appropriate con�guration, where
∑n

2 arccos Li

2R
is equal

to arccos L1

2R
. Note that, based on the given construction, for the existence of

such a domain polygon it is su�cient to have L1 <
∑n

2 Li.

4.2.3 Sides and Angles

A third algorithm has also been elaborated that takes the local 3D angles

into consideration. First, we normalize the angles to satisfy the necessary

criterion for the n-sided convex polygon; i.e., let cangle = (n − 2)π/
∑

i φi;

then αi = cangleφi. Now, plake the chord lengths in sequence, retaining the

angles, which will likely yield an open polyline, having a di�erence vector e

between the �rst and last points (see Fig. 4.7). In order to amend this, we �x

the very �rst point, and modify the subsequent ones sequentially, �rst by 1
n
e,

4.3. PARAMETERIZATION USING LINE SWEEPS 63

Figure 4.7: Length/angle-based convex polygonal domain.

then by i
n
e (i = 2, . . . , n). In the closed polygon obtained, both the chord

lengths and the angles are somewhat distorted, but the results still proved

to be satisfactory.

4.3 Parameterization Using Line Sweeps

There are various parameterization methods in the literature to map a (u, v)

point from a convex polygon onto a rectangular domain. Recall that linear

ribbons have two parameters, the side parameter s and the distance param-

eter d, where s gives the position on the de�ning boundary curve and d is

the multiplier of the cross-tangent vector going in the direction of the surface

interior. The d parameters are also used to determine the blending weights,

as seen in Section 4.1.2.

As a side note, it is evident that these two functions of the d parameter

are independent. This allows us to use a parameter pair (s, d) as ribbon

parameters, and some other distance t for blending, essentially using a pa-

rameter triple (s, d, t) for every point. This has been found to be useful in

practice, with perpendicular distance (see below) as the choice for t. Nev-

ertheless, here we will continue to use only (s, d) parameters for simplicity's

sake.

Side parameters are often derived from distance parameters by simple

methods like

si =
di−1

di−1 + di+1

.

64 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.8: Proportions in bilinear parameterization.

We will see the reverse process in Section 4.4.3.1. One trivial example for

the d parameter is the perpendicular distance. Take a (u, v) point from

the polygon, and drop a perpendicular line to each side. The (normalized)

lengths of the resulting line segments can be used as a distance parameter,

see Fig. 4.10a. A variation of this method is the barycentric parameteriza-

tion, where the d parameter is computed as the relative area of the triangle

de�ned by the (u, v) point and the endpoints of the i-th side.

One particular family of parameterization methods is called line sweeps,

where the s parameter lines constitute a continuum of straight lines, sweeping

from the (i−1)-th side to the (i+ 1)-th. The simplest member of this family

is bilinear parameterization. Let us look at the parameterization for the i-th

side of the polygon, de�ned by pi−1 and pi. A (u, v) point can be written as

the linear interpolant of two points on the (i−1)-th and (i+1)-th sides, that

are themselves linear interpolants of pi−2�pi−1, and pi�pi+1, respectively,

see Figures 4.8 and 4.10b. Thus

(u, v) = (1− si) ((1− di)pi−1 + dipi−2) + si ((1− di)pi + dipi+1) .

To obtain (si, di) for a given (u, v), a quadratic equation needs to be solved.

Another classic parameterization scheme is the radial distance, proposed

by Charrot and Gregory [3], where the (i− 1)-th and (i + 1)-th sides of the

4.3. PARAMETERIZATION USING LINE SWEEPS 65

Figure 4.9: Constructing the radial parameterization.

polygon are elongated (see Fig. 4.9), yielding a point ci. The intersection of

the i-th side with a radial line going through ci and (u, v) produces the (s, d)

parameters. Fig. 4.10c shows an example.

There is one natural requirement for all parameterizations. We wish to

map the middle parameter lines of the individual ribbons �somewhere� in the

middle of the n-sided domain. Our analysis has shown that for the above

methods this property is often not satis�ed, which may lead to undesirable

3D shape artifacts. On the right-hand side of Fig. 4.10 the map of the

central constant parameter lines is shown for a �ve-sided patch, using three

di�erent parameterization schemes. Observe the skewed location, running

far from the approximate center point of the domain, especially in the radial

parameterization case. As a consequence, the middle of the ribbons would

contribute to the n-sided patch in a fairly asymmetric manner.

This motivated us to develop a new line sweep method, which guarantees

a balanced ribbon mapping, as follows.

4.3.1 Central Line Sweep

The goal of this method is to force the central s constant parameter line to

go through the center of the polygonal domain (see Fig. 4.11). The exact

computations are detailed below.

66 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

(a) Perpendicular parameterization

(b) Bilinear parameterization

(c) Radial parameterization

Figure 4.10: Constant parameter lines of di�erent schemes: s and d lines
based on the top right side (left image), s lines based on the right and top
right sides (middle image) and s = 1

2
lines for all sides (right image).

4.3. PARAMETERIZATION USING LINE SWEEPS 67

Figure 4.11: Constant parameter lines for the central line sweep parameter-
ization.

The center of the polygon C = (cu, cv) can be computed as the weighted

sum of the polygon vertices. The weights can be uniform, but it is better to

use the summed length of the adjacent sides as weights, in order not to be

biased by a sequence of short polygon sides, i.e.,

C =
1∑

i µi,i−1

∑
i

(µi+1,i + µi,i−1)pi,

where µi,i−1 = ‖pi − pi−1‖.

Let us look at the mapping for side i, de�ned by vertices pi−1 and pi.

Without loss of generality, place pi on the u-axis, with pi−1 being at the

origin (see Fig. 4.12). Assuming that the reverse mapping is done by a

function ri(si, di), we know that ri(
1
2
, dc

i) = C for some unknown dc
i distance

parameter. Now a linear-by-quadratic map is introduced:

ri(si, di) = pisi +
[
wl(1− si)

2 + wc2(1− si)si + wrs
2
i

]
di,

where the vectors wl, wr and wc de�ne the direction of the quadratic sweep.

While the �rst two are de�ned by the direction vectors of the adjacent sides,

wc = (wu
c , w

v
c) remains unknown. To simplify the calculation, let us require

that

wv
c =

wv
l + wv

r

2
.

68 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Now if we examine the center point, we �nd that

cv =
1

4
[wv

l + 2wv
c + wv

r] dc
i ,

thus dc
i = 2cv

wv
l +wv

r
. From the other coordinate equation

cu =
pu

i

2
+

1

4
[wu

l + 2wu
c + wu

r] dc
i ,

so we can express the missing u component of wc. All that is left is to solve

the quadratic equation

di(u, v) =
u− pu

i si

wu
l (1− si)2 + 2wu

c (1− si)si + wu
r s

2
i

=
v

wv
l (1− si) + wv

rsi

,

where si stands for si(u, v). After some straightforward algebra, we arrive at

the familiar expression η0s
2
i + η1si + η2 = 0, where

η0 = pu
i (wv

r − wv
l) + v(wu

r − 2wu
c + wu

l),

η1 = pu
i w

v
l + u(wv

l − wv
r) + 2v(wu

c − wu
l),

η2 = vwu
l − uwv

l .

4.3.2 Variants of the Distance Parameter

If we also want to constrain the d = 1
2
constant parameter line to go through

the center point, we can do this by post-processing:

d̂i(u, v) =

[
(1− si)

2 +
1− dc

i

dc
i

2(1− si)si + s2
i

]
di.

The e�ect of this change is shown in the left-hand image of Fig. 4.13.

Another natural choice for d is the distance from the sweep line's foot-

point, as in radial parameterization:

4.4. MULTI-SIDED COONS PATCH 69

Figure 4.12: Computing the central line sweep parameterization.

dfoot
i (u, v) = ‖(u, v)− (sip

u
i , 0)‖,

depicted in the middle image. Arguably this is more desirable than the linear

function used in the previous section. Using the same technique, we can force

its central distance parameter line to go through the center of the domain:

d̃i(u, v) =

[
(1− si)

2 1

‖wl‖
+ s2

i

1

‖wr‖
+(

2

‖C − (pu
i /2, 0)‖

− 1

‖wl‖
− 1

‖wr‖

)
(1− si)si

]
dfoot

i .

The right-hand image of Fig. 4.13 shows an example.

4.4 Multi-sided Coons Patch

The next few sections deal with the generalization of Coons patches to n sides.

The proposed interpolating surface uses the same principles as the original

Coons patch, i.e., combines linear side interpolants and corner correction

patches, and thus can be regarded as a natural generalization, even though

the surface presented here will not revert to a Coons patch for quadrilateral

con�gurations.

In Section 4.4.1 a new patch construction is introduced, and Appendix A

70 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.13: Di�erent distance parameterizations: centralized (left), foot-
point (center) and centralized footpoint (right).

provides a proof of its basic interpolation properties. In Sections 4.4.2 and

4.4.3 we show suitable functions for blending and parameterization, respec-

tively.

4.4.1 Coons Patch Generalization

With appropriate parameterization functions si(u, v) and di(u, v), Equa-

tion (4.1) can be generalized as

S(u, v) =
n∑

i=1

Ri(si, di) ·Bi(d1, . . . , dn)−
n∑

i=1

Qi,i−1(si, si−1) ·Bi,i−1(d1, . . . , dn),

where Bi = Bi,i−1+Bi+1,i is a side blend, and Bi,i−1 is a corner blend function.

Bi,i−1 is required to have the following properties:

Bi,i−1(d1, . . . , dj = 0, . . . dn) = 0, j /∈ {i− 1, i} (4.2)

Bi,i−1(d1, . . . , di = 0, . . . , dn) +

Bi+1,i(d1, . . . , di = 0, . . . dn) = 1, (4.3)

∂

∂dj

Bi,i−1(d1, . . . , dj = 0, . . . , dn) = 0, ∀j. (4.4)

Section 4.4.2 will show a possible construction. Equation 4.2 means that the

blend function vanishes on all sides not connected to the corner. Boundary

interpolation is satis�ed due to Eq. 4.3, and �nally Eq. 4.4 is needed for

4.4. MULTI-SIDED COONS PATCH 71

proving the tangential properties of the patch (see Appendix A). From these,

it follows that

Bi(d1, . . . , dj = 0, . . . , dn) = 0, j /∈ {i− 1, i, i+ 1}

Bi(d1, . . . , di = 0, . . . , dn) = 1,

Bi−1(d1, . . . di = 0, . . . dn) = Bi,i−1(d1, . . . , dn),

Bi+1(d1, . . . di = 0, . . . dn) = Bi+1,i(d1, . . . , dn),

∂

∂dj

Bi(d1, . . . , dj = 0, . . . , dn) = 0, ∀j.

There are several requirements for the (si, di) parameterization, as well.

First, for si we need

si ∈ [0, 1], (4.5)

and for a point on the i-th side, the parameterization has to satisfy that

di = 0, (4.6)

si−1 = 1, si+1 = 0, (4.7)

di−1 = si, di+1 = 1− si, (4.8)

∂di−1

∂u
=
∂si

∂u
,

∂di−1

∂v
=
∂si

∂v
, (4.9)

∂di+1

∂u
= −∂si

∂u
,

∂di+1

∂v
= −∂si

∂v
. (4.10)

We can see that there are more restrictions, than for the patches reviewed

in Section 4.1 (only (4.5)�(4.7) are required for those), but in Section 4.4.3

various techniques will be presented for creating eligible parameterizations.

4.4.2 Blending functions

Recall the blending function Bi,i−1 described in [3]:

Bi,i−1(d1, . . . , dn) =

∏
k/∈{i,i−1} d

2
k∑

l

∏
k/∈{l,l−1} d

2
k

=
D2

i,i−1∑
l D

2
l,l−1

.

72 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.14: Blending functions Bi,i−1 and Bi over a six-sided domain.

Assumptions (4.2) and (4.3) are trivially true. In order to prove (4.4),

examine the following di�erence:

lim
∆→0

Bi,i−1(d1, . . . , dj = ∆, . . . , dn)−Bi,i−1(d1, . . . , dj = 0, . . . , dn)

∆
.

First assume that j /∈ {i, i − 1}. Consequently, the right hand side of the

numerator is 0 and the left hand side contains ∆2 in the product, so it can

be reformulated as

lim
∆→0

∆
∏

k/∈{i,i−1,j} d
2
k

∆2
∑

l /∈{j+1,j}
∏

k/∈{l,l−1,j} d
2
k +

∑
l∈{j+1,j}D

2
l,l−1

= 0,

since the right hand side of the denominator does not contain ∆. Now

assume that j ∈ {i, i − 1}. Introducing the notations α = D2
i,i−1, β =∑

l /∈{j,j+1}D
2
j,l,l−1 and γ = D2

j,j−1 +D2
j+1,j, the expression can be rewritten as

lim
∆→0

1

∆

(
α

∆2β + γ
− α

γ

)
= lim

∆→0

1

∆

(
αγ − (∆2β + γ)α

∆2βγ + γ2

)

4.4. MULTI-SIDED COONS PATCH 73

= lim
∆→0
− ∆αβ

∆2βγ + γ2
= 0.

Thus this blend function adheres to all requirements. Fig. 4.14 shows a

graphical representation of Bi,i−1 and Bi. The overall blending e�ect is

demonstrated on Figures 4.15 and 4.16, using color coding. The blending

functions used here are computed by the d coordinates of the interconnected

parameterization (based on the central sweep method), see the next section.

Black lines show the points where the contribution of a side (corner) reaches

approximately 90%; white lines show the points where the blending terms

corresponding to two sides (corners) are equal.

4.4.3 Parameterizations

While the parameterization methods presented in Section 4.3 work for con-

ventional trans�nite surface interpolation, they do not satisfy all the re-

quirements (4.5)�(4.10). In order to be able to satisfy these, we need more

conformity between the s and d parameters of adjacent sides. The following

sections explore three alternatives for such constructions.

4.4.3.1 Interconnected Parameterizations

Take functions si(u, v) that give 0 for every point on the (i−1)-th side and 1

for those on the (i+ 1)-th side; for all other points inside the convex domain,

they return a value in [0, 1]. For example, the s coordinates of radial line

sweeps are such functions. These naturally satisfy (4.5) and (4.7). De�ne a

blending function α(t) ∈ [0, 1] → [0, 1] with α(0) = 1 and α(1) = α′(0) =

α′(1) = 0. Examples are the Hermite function α0(t) from Section 4.1.1, or

a variation of the rational blend function presented in the previous section:

α(t) = (1−t)2

t2+(1−t)2
. Now we can de�ne di by means of si−1 and si+1 as follows:

di(u, v) = (1− si−1(u, v)) · α(si) + si+1(u, v) · α(1− si).

If we are on the i-th side, si−1 = 1 and si+1 = 0, so di = 0, satisfying (4.6).

74 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.15: Distribution of the blending functions Bi using di�erent colors
for each side

4.4. MULTI-SIDED COONS PATCH 75

Figure 4.16: Distribution of the blending functions Bi,i−1 using di�erent col-
ors for each corner.

76 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.17: Constant parameter lines of the interconnected parameteriza-
tion.

Still on the i-th side, di−1 and its derivative are the same as si:

di−1 = (1− si−2) · α(si−1) + si · α(1− si−1) = si,

∂di−1

∂u
=

∂

∂u
(1− si−2) · α(si−1) +

∂

∂u
si · α(1− si−1)

=
∂si

∂u
,

because the derivatives of the blend function vanish. The same reasoning

works for the derivative by v. Similarly

di+1 = (1− si) · α(si+1) + si+2 · α(1− si+1) = 1− si,

∂di+1

∂u
=

∂

∂u
(1− si) · α(si+1) +

∂

∂u
si+2 · α(1− si+1)

=
∂

∂u
(1− si) = −∂si

∂u
,

so the requirements (4.8), (4.9) and (4.10) are all satis�ed.

Fig. 4.17 shows constant s and d lines for this parameterization (using

the central line sweep parameterization as a basis). The �rst image is based

on the right side of the polygon; the second image is based on the small side

at the top-right; and the third image is based on the top side. Note that all

lines of the second image start the same way (in a di�erential sense) as their

counterparts in the �rst and third images.

4.4. MULTI-SIDED COONS PATCH 77

Figure 4.18: Parabolic parameterization � left parabola case.

4.4.3.2 Parabolic Parameterization

While the interconnected parameterization scheme satis�es all requirements,

it is easy to see that its constant parameter lines always have in�ections. In

this section we will show a more natural parameterization. However, this

comes with a price: its computation is much more complex, involving the

solution of a third or fourth degree equation. The following method uses

quadratic curves, but it can be extended to curves of higher degree.

This method also requires a base parameterization; we will use bilinear

parameterization here, but the same computation can be done for radial or

other parameterizations as well (note, though, that the equation's degree

may be higher for other parameterizations, such as for central line sweep).

For ease of computation, we will assume that the base side lies on the u axis,

with its endpoints at the origin and (1, 0). Points A and C are the distant

endpoints of the previous and next domain polygon sides, respectively, see

Fig. 4.18.

The idea is the following: we de�ne two sets of curves, one for the left

78 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.19: Constant parameter lines of the parabolic parameterization with
λ = 1

2
(top) and λ = 3

4
(bottom).

side, and one for the right. The curves have the same positions and tangents

near the left (right) side, as the bilinear sweeping lines for that side. Then

we blend the two curve sets together. Here we will only deal with the left

curve set, but the computations are analogous for the right side.

We place point B as in the �gure, at λ proportion of the AD side, where

λ is the so-called fullness parameter. The ABC triangle de�nes a quadratic

Bézier curve, drawn in green. Note that the AB segment is the sweeping

line of the bilinear parameterization based on the left side of the polygon,

i.e., the A − (0, 0) − (1, 0) − D quadrilateral. Other sweeping lines de�ne

di�erent Bézier curves (with the middle point of the triangle being on the

constant bilinear parameter de�ned by B). One of these curves goes through

the (u, v) point, at parameter ŝ. Let Q be the point of the curve de�ned by

the ABC triangle at ŝ. Connecting Q and (u, v) crosses the baseline at P .

4.4. MULTI-SIDED COONS PATCH 79

Trivially

v =
u− pu

qu − pu
· qv,

which can also be written as

(qu − pu)v + qv(pu − u) = 0.

From the de�nition of Q, we have

Q = (1− ŝ)2A+ 2(1− ŝ)ŝB + ŝ2C,

and similarly, P = (pu, 0), where

pu = (1− ŝ)2 · 0 + 2(1− ŝ)ŝ · λ+ ŝ2 · 1 = (1− 2λ)ŝ2 + 2λŝ.

This leads to a fourth-degree equation in ŝ:

η0ŝ
4 + η1ŝ

3 + η2ŝ
2 + η3ŝ+ η4 = 0,

where

η0 = (1− 2λ)(av − 2bv + cv),

η1 = 2λ(av − 2bv + cv) + (1− 2λ)2(bv − av),

η2 = (au − 2bu + cu)v − (av − 2bv + cv)u+

4λ(bv − av) + (1− 2λ)(av − v),

η3 = (2(bu − au)− 2λ)v − 2(bv − av)u+ 2λav,

η4 = auv − avu.

Now we de�ne dl as

dl =
v

qv
= v/

(
(1− ŝ)2av + 2ŝ(1− ŝ)bv + ŝ2cv

)
.

Note that dl behaves the same way near the left side as the sweeplines based

on it. The same can be done for the right side, resulting in dr. Finally, we

80 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.20: Control net and constant parameter lines of the biquadratic
parameterization (left: side-based, right: corner-based).

compute s from the bilinear parameterization, and then use it to blend the

two d values:

d = α0(s)dl + α1(s)dr.

An example is shown in Fig. 4.19. Experiments show that the choice of

λ = 3
4
seems to generate nice constant parameter lines. It is worth noting,

though, that setting λ to 1
2
eliminates η0 and thus we will only have a third-

degree equation. This parameterization satis�es all requirements, see the

proof in Appendix B.

4.4.3.3 Biquadratic Parameterization

The patch de�ned in Section 4.4 is using side-based linear interpolants, but

also corner-based correction patches. In the following, two parameterizations

will be used, one for the ribbons (side-based parameterization), and one for

the correction patches (corner-based parameterization). The idea is that a

linear side interpolant should have the same parameterization near the side

adjacent to its base as the correction patch of the corresponding corner,

enabling the correction patch to cancel out the �garbage� generated by the

ribbons. This will be achieved by biquadratic maps similar to the overlap

patch parameterization [38].

4.4. MULTI-SIDED COONS PATCH 81

We place a three-by-three control net on the domain, and the resulting

planar surface de�nes a parameterization (see Fig. 4.20). We need the inverse

of this biquadratic map, which can be computed by numerical methods, such

as the Newton�Raphson algorithm. Note that the control points on the left-

hand side are the same in both the side-based and the corner-based variants,

so the two parameterizations behave identically near the left boundary. In

the following we will examine the construction of these biquadratic control

nets.

Imagine a domain with its i-th side on the u axis. For the side-based

case, the control points are de�ned as pl plr pr

pLl c prR

pL poi
pR

 ,
where pl and pr are the left and right endpoints of the i-th (base) side, pL

(pR) is the left (right) endpoint of the domain edge on the left (right) of the

i-th side, c is the center of the domain and poi
is domain vertex opposite

to the i-th side (for even-sided polygons poi
is the midpoint of the opposite

side). The notation pij means the midpoint of the segment de�ned by pi and

pj.

When the basis is the corner at pl, the control points are pl plr pr

pLl c poi−1

pL poi
poi,i−1

 ,
where poi,i−1

is the vertex opposite to the vertex de�ned as the intersection

of the i-th and (i− 1)-th sides (for odd-sided polygons poi,i−1
is the midpoint

of the opposite side).

Note that the �rst two columns are the same as in the side-based case.

Also the �rst two rows have their counterparts in the (i − 1)-th side-based

biquadratic as well. These relationships tell us that the parameterization

based on the i, i−1 corner behaves the same way for a point on the (i−1)-th

82 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

F
igu

re
4.21:

C
on
trol

n
ets

u
sin

g
on
ly

p
oin

ts
of

th
e
d
om

ain
p
oly

gon
,
b
ased

on
th
e
b
ottom

sid
e
(left

im
age),

th
e
righ

t
sid

e
(righ

t
im

age)
an
d
b
oth

(m
id
d
le
im

age).

4.4. MULTI-SIDED COONS PATCH 83

F
ig
u
re

4.
22
:
C
on
tr
ol
n
et
s
u
si
n
g
B
éz
ie
r
m
id
p
oi
n
ts
,
b
as
ed

on
th
e
b
ot
to
m

si
d
e
(l
ef
t
im

ag
e)
,
th
e
ri
gh
t
si
d
e
(r
ig
h
t
im

ag
e)

an
d
b
ot
h
(m

id
d
le
im

ag
e)
.

84 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.23: Control nets for triangular domains, based on the bottom side
(left image), the right side (right image) and both (middle image).

side as the parameterization based on the i-th side; and for a point on the i-th

side as the parameterization based on the (i− 1)-th side. This is important,

because it means that all super�uous data that comes into the equations

from the ribbon interpolation can be eliminated by corner-parameterized

correction patches.

Figure 4.21 shows some examples for even- and odd-sided regular poly-

gons. Scrutinous readers may have noticed that there is a perceivable e�ect of

shearing away from the base side(s). This e�ect can be lessened by using mid-

points of Bézier curves instead of all the �opposite� vertices and midpoints,

as in Fig. 4.22. Comparison of the two sets show that signi�cant changes

appear only far from the base side(s), where the blending function almost

vanishes, thus the two schemes are virtually identical. There is one special

case: three-sided segments have a very intuitive, singular parameterization

(depicted in Figure 4.23).

So in our trans�nite surface scheme, side-based parametrizations are used

for ribbons (Ri) and blends (Bi,i−1), but corner-based parametrizations are

used for the correction patches (Qi,i−1). We will use the convention of refer-

ring to corner-based parameters by (s∗i , d
∗
i), while retaining (si, di) for side-

based ones.

The parametrization requirements (4.5)�(4.7) are trivially satis�ed for

side-based schemes. Linearity on the sides also guarantees (4.8), even be-

tween a side-based and a corner-based patch. The remaining constraints do

not hold for either type, but are valid in-between: the di−1 side-parameters

4.5. CURVED SIDE INTERPOLANTS 85

Figure 4.24: Constituents of a curved ribbon.

are equal to the s∗i corner-parameters in derivative sense (a corner-parameter

with index i is associated with the biquadratic patch based on the i-th and

(i − 1)-th edges, using the i-th edge as constant d∗i = 0). Similarly all re-

quirements are satis�ed in this way.

Unfortunately this means that we have to alter the original de�nition of

the surface, substituting Qi(s
∗
i , d
∗
i) = Qi,i−1(s∗i , 1− d∗i) for Qi,i−1(si, si−1):

S(u, v) =
∑

i

Ri(si, di) ·Bi(d1, . . . , dn)−
∑

i

Qi(s
∗
i , d
∗
i) ·Bi,i−1(d1, . . . , dn).

The patch still interpolates the boundary data correctly, as it is proven in

Appendix A.3.

4.5 Curved Side Interpolants

The patches in the previous sections use linear ribbons. These have the

advantage of being very simple and can be computed e�ciently. On the

86 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

other hand, highly curved surfaces deviate far from their linear interpolants,

thereby decreasing stability. Unintuitive bulges, coming from contradicting

cross-derivatives, pose a common problem. Recall, however, that conven-

tional side interpolant-based trans�nite interpolation surfaces do not depend

on the linearity of the ribbons. We can thus de�ne curved ribbons that follow

the shape of the surface more closely.

Let Ci(si, di) denote the curved ribbon for the i-th side. In order to

simplify the notation, we will drop the indices of s and d when talking about

only one curved ribbon, as it does not cause any ambiguity. The de�nition

of Ci is as follows (see Fig. 4.24):

Ci(s, d) = Rl
i(s, d)H(s) +Ri(s, d)H(d) +Rr

i (s, d)H(1− s)

− Ql
i(s, d)H(s)H(d)−Qr

i (s, d)H(1− s)H(d),

where

Rl
i(s, d) = Ri−1(1− d, s) = Pi−1(1− d) + sTi−1(1− d)

Rr
i (s, d) = Ri+1(d, 1− s) = Pi+1(d) + (1− s)Ti+1(d)

Ql
i(s, d) = Qi,i−1(s, 1− d) = Pi(0) + sTi−1(1) + dTi(0) + sdWi,i−1

Qr
i (s, d) = Qi+1,i(d, s)

= Pi+1(0) + dTi(1) + (1− s)Ti+1(0) + d(1− s)Wi+1,i

and H(t) is a blend function, for example the Hermite blend function α0(t).

It is interesting to note that the curved corner interpolants of the Gregory

patch [3] can be de�ned in terms of ribbons and correction patches, as well:

RGregory
i,i−1 (si, si−1) = Ri−1(si−1, si) +Ri(si, 1− si−1)−Qi,i−1(si, si−1).

The curved ribbon de�ned above interpolates three consecutive boundary

curves using blends, which makes it essentially a three-sided Coons patch.

These ribbons can be used as side interpolants for conventional trans�nite

interpolation patches, but there is also a more natural blending scheme, as

proposed in the next section.

4.6. COMPOSITE RIBBON PATCH 87

4.6 Composite Ribbon Patch

The generalization of Coons patches, as introduced in Section 4.4, does not

work with curved side interpolants. Here we propose a new representation

that utilizes the properties of curved ribbons in order to eliminate the need

for correction patches. This new n-sided trans�nite surface patch is de�ned

as

S(u, v) =
1

2

n∑
i=1

Ci(si(u, v), di(u, v))Bi(d1(u, v), . . . , dn(u, v)),

where the parameterization satis�es the requirements listed in (4.5)�(4.10).

According to the characteristics of the Bi blend function, for any point

on the i-th boundary all addends of the sum vanish except for Ci−1, Ci and

Ci+1. Since each of these ribbons also interpolates the adjacent curves, the

three ribbon points are the same. Their cumulative blend is

Bi−1 +Bi +Bi+1 = Bi,i−1 +Bi +Bi+1,i

= (Bi,i−1 +Bi+1,i) +Bi

= 1 + 1 = 2,

hence the division by two in the surface equation. So this patch also inter-

polates the boundary data � the full proof can be found in Appendix C.

The proof also shows that the parameterization constraints can be loos-

ened. If we leave out the last two requirements (4.9 and 4.10), the patch

remains valid, i.e., it will have the same tangent plane for every boundary

point as the respective Coons ribbon, but it won't have the exact same tan-

gent vector. This enables the use of many other parameterizations, such as

the bilinear or the central line sweep parameterizations.

In other words, we have created a new trans�nite surface representation

that (i) has the same computational complexity as other conventional meth-

ods, (ii) uses curved side interpolants, and (iii) employs non-singular blend

functions.

88 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

4.7 Test Results

In this research on trans�nite surface interpolation we have presented a wide

collection of algorithms with a large number of variables. The surfaces de-

pend on the domain polygon, the parameterization scheme, the choice of

trans�nite interpolation patch, and several algorithm-dependent parameters,

such as the fullness parameter in Section 4.4.3.2. Comparing all possible

combinations would be extremely di�cult, and one cannot help the feeling

that any comparison is contrasting apples and oranges. The utmost attention

was paid to make sensible examples, comparing the following surface patch

con�gurations:

• Linear Ribbon patch (LR): The side interpolant-based surface reviewed

in Section 4.1.2, using the alternative blending functions Bside
i =

D2
iP

j D2
j

based on perpendicular distances, as described at the beginning of Sec-

tion 4.3. The domain is constructed using the �arcs by arc lengths�

algorithm (Section 4.2.1), and the ribbons are parameterized by cen-

tral line sweep (Section 4.3.1).

• Generalized Coons patch (GC): The surface representation introduced

in Section 4.4, using the same domain as the LR patch, and parame-

terized by the central line sweep-based interconnected parameterization

method (Section 4.4.3.1).

• Composite Ribbon patch (CR): The curved ribbon-based surface pro-

posed in Section 4.6, using the same domain and parameterization as

the GC patch.

Also note that the compatibility of ribbons needed for the GC patch and the

CR patch was established by appropriate scaling and the use of Gregory's

variable twists.

The �rst example in Fig. 4.25 shows the mean map of a model containing

three-, four- and �ve-sided surfaces. The �rst image was created by a LR

patch. Note the blue areas near the sides � these are artifacts of the blending

function, which abruptly drops as we move away from the boundaries. The

CR patch below is free of these unwanted curvature changes.

4.7. TEST RESULTS 89

Figure 4.25: Mean map comparison of a model with four surfaces (top: LR,
bottom: CR).

90 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.26: Mean map comparison of a surface using di�erent patch types
(top: LR, middle: GC, bottom: CR).

CONCLUSIONS 91

In Fig. 4.26 the three schemes de�ned above are contrasted using a single

surface. The low-curvature areas at the right-hand corners are smoothed out

in both of the new patches. The GC and CR patches are very similar, but

the latter has even more smooth curvature transitions.

In order to understand the essential di�erence between the GC and CR

patches, we should examine their ribbons. Figure 4.27 depicts them over

the constant parameter lines of the patches. In the linear ribbon case, the

interpolants start to deviate from the surface at a very �early phase�, thus

points in the interior are actually computed as the a�ne combination of

relatively distant positions. On the other hand, the curved interpolants on

the right-hand side image are going close to the predictable surface position,

and in this way, points in the interior are combinations of ribbon points that

are relatively close, keeping curvature variation at a low level. The slicing

maps show that both surfaces have su�ciently good quality.

Finally, Fig. 4.28 shows isophote lines on two CR patches connected by

a smooth edge. The ends of the lines match along the boundary, con�rm-

ing G1 continuity, and in most points they are also unbroken, exhibiting

approximately G2 behavior.

Conclusions

In this chapter traditional approaches to trans�nite surface interpolation have

been enhanced and generalized in several ways, as follows. New heuristic al-

gorithms were proposed for generating convex domain polygons. These are

constructed by approximately reproducing the arc lengths and the corner an-

gles of the three-dimensional loop of boundary curves. It was shown through

examples that these polygons lead to better parameterizations and thus im-

prove surface quality. A new parameterization, called central line sweep,

was also introduced. This scheme adapts the line sweep parameterization

methods to work better over non-regular domains. This is achieved by con-

straining the middle isoline of the ribbons to go through the center of the

polygon. A new n-sided generalization of the Coons patch was developed as

well, based on the same idea of combining linear ribbons and corner correc-

92 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Figure 4.27: A �ve-sided boundary con�guration using a GC patch (left) and
a CR patch (right), visualized by spider lines and three ribbons (top) and
slicing map (bottom).

CONCLUSIONS 93

Figure 4.28: A G1 model with two CR patches, using isophote line visualiza-
tion.

tion patches. Three novel parameterization methods were also elaborated,

that meet the requirements of this new patch. Furthermore, curved ribbons

were de�ned lying on three boundary curves, ensuring better surface interior

for side interpolant-based patches. Finally, another trans�nite surface repre-

sentation was created, based on curved ribbons. Comparisons of the two new

surface patches with traditional methods showed signi�cant improvement in

surface quality.

94 CHAPTER 4. TRANSFINITE N -SIDED SURFACES

Summary

We have examined fair curves and surfaces in two di�erent contexts. In the

Digital Shape Reconstruction area, post-processing methods were elaborated

in order to enhance the quality of surfaces while deviation from the origi-

nal ones was kept below a prescribed tolerance (Chapters 2 and 3). In the

Computer-Aided Geometric Design area new trans�nite interpolation tech-

niques were developed in order to create multi-sided surface patches that

satisfy a set of positional and tangential boundary constraints (Chapter 4).

Noisy point clouds and the resulting loss of surface �tting quality are

facts of life in the CAD model reconstruction process that have to be dealt

with. Fairing constitutes the �nal phase in the pipeline, having a direct e�ect

on the output. Identifying the low quality areas is the �rst step � to this

end, a new smoothness evaluation method was introduced. E�cient curve

and surface fairing algorithms were proposed that minimize this measure.

The smoothing e�ect and deviation were analyzed using visual interrogation

tools, such as mean curvature maps and isophote lines.

A complex model with smooth edges cannot be faired by its components,

since there are G1 or G2 continuity constraints between individual patches.

A novel fairing mechanism was designed that goes through the patches in a

hierarchical order, �rst smoothing primary surfaces, then edge blends, and

�nally coner patches, always retaining and enhancing continuity with the

surfaces higher in the hierarchy. Special master�slave algorithms were de-

veloped for numerical continuity enhancement, which are glued together by

a framework capable of handling not only four-sided surfaces, but also split

patches with an arbitrary number of sides.

In the design context, we usually have a clear view of what kind of fea-

95

96 SUMMARY

ture curves we need. These may come from various sources, for example

2D sketches. On the other hand, we rarely have any real information on

the interior of the surfaces, which makes conventional surfacing techniques

inconvenient. Trans�nite interpolation seems to be the ideal solution to this

problem, spreading a surface within a loop of boundary curves.

The Coons patch is a well-known example for four-sided con�gurations,

widely used due to its natural curvature distribution. Former n-sided vari-

ants of the Coons patch, however, do not exhibit the same nice properties,

partially owing to the parameterization, limited by regular domain polygons,

and to the linear side interpolants. Three new algorithms were suggested for

creating non-regular domain polygons, along with a new line sweep parame-

terization that resolves the issues of traditional methods de�ned for regular

domains. In order to lessen the artifacts of a�ne combination near the center

of the surface, curved side interpolants were proposed.

Two novel surface patch representations were also introduced: the �rst

one can be regarded as the direct generalization of the Coons patch, using

linear ribbons, and the second is a natural application of curved side inter-

polants. In addition, several new parameterization methods were developed

that satisfy the more strict requirements of these surfaces.

We believe that these patches o�er numerous advantages over control

point-based approaches, and thus could become a viable alternative to other

techniques such as T-splines [36, 35], especially in a sketch-based environ-

ment, where prede�ned curves and tangent planes have to be interpolated.

There are various areas for future research. These include the automatic

creation of boundary ribbons based on a given 3D network, the use of non-

convex polygonal domains, additional shape control of the patch interior, and

surface approximation using trans�nite surface patches.

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Tamás Várady,

who introduced me to the world of CAGD, and without whose ideas and

encouragement this work would never have been �nished. I am also indebted

to Prof. Hiromasa Suzuki for his invaluable support during my time at the

University of Tokyo. Special thanks are due to Prof. László Szirmay-Kalos

for supporting my research work at the Budapest University of Technology

and Economics.

Parts of this research have been conducted within Geomagic, Inc. and

ShapEx Ltd., Budapest. I highly appreciate the inspiring research environ-

ment of these teams, in particular the help of Zsolt Terék, Pál Benk®, György

Karikó and Mike Facello. I am also grateful for our fruitful research cooper-

ation with Prof. Alyn Rockwood (King Abdullah University of Science and

Technology).

97

98 ACKNOWLEDGEMENTS

Appendix A

Generalized Coons Patch � Proof

We will prove that the boundary constraints for an arbitrary point on the

i-th side are satis�ed in both positional and tangential sense.

A.1 Positional Constraints

Take a (u, v) point on the i-th side, where di = 0. Here all blend functions

vanish, except for Bi,i−1 and Bi+1,i, and thus Bi−1, Bi and Bi+1 are also

non-zero. Consequently,

S(u, v) = (Ri−1(si−1, di−1)−Qi,i−1(si, si−1)) ·Bi,i−1(d1, . . . , dn) +

Ri(si, di) +

(Ri+1(si+1, di+1)−Qi+1,i(si+1, si)) ·Bi+1,i(d1, . . . , dn).

Since di = 0, i.e., si−1 = 1 and di−1 = si, it follows that

Ri−1(si−1, di−1) = Pi−1(si−1) + di−1Ti−1(si−1)

= Pi−1(1) + siTi−1(1)

and also

Qi,i−1(si, si−1) = Pi(0) + siTi−1(1) +

(1− si−1)Ti(0) + si(1− si−1)Wi,i−1

99

100 APPENDIX A. GENERALIZED COONS PATCH � PROOF

= Pi(0) + siTi−1(1) = Pi−1(1) + siTi−1(1),

so these two cancel out each other. Similarly, on the (i+ 1)-th side

Ri+1(si+1, di+1) = Pi+1(si+1) + di+1Ti+1(si+1)

= Pi+1(0) + (1− si)Ti+1(0)

and

Qi+1,i(si+1, si) = Pi+1(0) + si+1Ti(1) +

(1− si)Ti+1(0) + si+1(1− si)Wi+1,i

= Pi+1(0) + (1− si)Ti+1(0).

Accordingly,

S(u, v) = Ri(si, di) = Pi(si) + diTi(si) = Pi(si).

The patch is thus positionally correct.

A.2 Tangential Constraints

For ease of notation, let us drop the arguments of the interpolants and

the blend functions, i.e., Rk = Rk(sk, dk), Qk,k−1 = Qk,k−1(sk, sk−1), Bk =

Bk(d1, . . . , dn) and Bk,k−1 = Bk,k−1(d1, . . . , dn). Then the derivative of S can

be written as follows:

∂

∂u
S(u, v) =

n∑
j=1

[(
∂

∂sj
Rj
∂sj

∂u
+

∂

∂dj
Rj
∂dj

∂u

)
·Bj+

Rj

(
∂

∂d1
Bj
∂d1

∂u
+ · · ·+ ∂

∂dn
Bj
∂dn

∂u

)]
−

n∑
j=1

[(
∂

∂sj
Qj,j−1

∂sj

∂u
+

∂

∂sj−1
Qj,j−1

∂sj−1

∂u

)
·Bj,j−1+

Qj,j−1

(
∂

∂d1
Bj,j−1

∂d1

∂u
+ · · ·+ ∂

∂dn
Bj,j−1

∂dn

∂u

)]
.

A.2. TANGENTIAL CONSTRAINTS 101

The derivative by v is similar. Fortunately, most blend functions (and all

their derivatives) vanish, when di = 0. The remaining equation is simpli�ed

to terms of the (i− 1)-th, i-th and (i+ 1)-th side:

∂

∂u
S(u, v) =

(
∂

∂si−1
Ri−1 −

∂

∂si−1
Qi,i−1

)
· ∂si−1

∂u
·Bi,i−1

+
(

∂

∂di−1
Ri−1 −

∂

∂si
Qi,i−1

)
· ∂di−1

∂u
·Bi,i−1

+
∂

∂si
Ri ·

∂si

∂u
+

∂

∂di
Ri ·

∂di

∂u

+
(

∂

∂si+1
Ri+1 −

∂

∂si+1
Qi+1,i

)
· ∂si+1

∂u
·Bi+1,i

+
(

∂

∂di+1
Ri+1 +

∂

∂si
Qi+1,i

)
· ∂di+1

∂u
·Bi+1,i.

Investigate this expression part by part:

∂

∂si−1

Ri−1 =
∂

∂si−1

Pi−1(si−1) + di−1
∂

∂si−1

Ti−1(si−1)

=
∂

∂si−1

Pi−1(1) + si
∂

∂si−1

Ti−1(1)

= −Ti(0)− siWi,i−1

and
∂

∂si−1

Qi,i−1 = −Ti(0)− siWi,i−1,

the di�erence is 0. Similarly,

∂

∂si+1

Ri+1 =
∂

∂si+1

Pi+1(si+1) + di+1
∂

∂si+1

Ti+1(si+1)

=
∂

∂si+1

Pi+1(0) + (1− si)
∂

∂si+1

Ti+1(0)

= Ti(1) + (1− si)Wi+1,i

and
∂

∂si+1

Qi+1,i = Ti(1) + (1− si)Wi+1,i,

the di�erence is 0 once again.

102 APPENDIX A. GENERALIZED COONS PATCH � PROOF

We have
∂

∂di−1

Ri−1 = Ti−1(si−1) = Ti−1(1)

and
∂

∂si

Qi,i−1 = Ti−1(1) + (1− si−1)Wi,i−1 = Ti−1(1),

giving a result of 0, and similarly

∂

∂di+1

Ri+1 = Ti+1(si+1) = Ti+1(0)

and
∂

∂si

Qi+1,i = −Ti+1(0)− si+1Wi+1,i = −Ti+1(0),

that sum to 0 as well.

This leaves only

∂

∂u
S(u, v) =

∂

∂si

Ri ·
∂si

∂u
+

∂

∂di

Ri ·
∂di

∂u

=

(
∂

∂si

Pi(si) +
∂

∂si

Ti(si)di

)
· ∂si

∂u
+ Ti(si) ·

∂di

∂u

=
∂

∂si

Pi(si) ·
∂si

∂u
+ Ti(si) ·

∂di

∂u
.

The same reasoning results in

∂

∂v
S(u, v) =

∂

∂si

Pi(si) ·
∂si

∂v
+ Ti(si) ·

∂di

∂v
.

A.3 Biquadratic Parameterization Case

As the formula of the patch is di�erent, when we apply biquadratic parame-

terization, the proof needs to be modi�ed accordingly. It is enough, however,

to check only the parts concerning Qi, since that is the only term that has

changed.

A.3. BIQUADRATIC PARAMETERIZATION CASE 103

Positional Constraints

This is trivial, since for a point lying on the i-th side, s∗i = si and d
∗
i = 0.

So:

Qi(s
∗
i , d
∗
i) = Pi(0) + s∗iTi−1(1) + d∗iTi(0) + s∗i d

∗
iWi,i−1

= Pi(0) + siTi−1(1) = Pi−1(1) + siTi−1(1),

and also, using s∗i+1 = 0 and d∗i+1 = 1− si:

Qi+1(s∗i+1, d
∗
i+1) = Pi+1(0) + s∗i+1Ti(1) +

d∗i+1Ti+1(0) + s∗i+1d
∗
i+1Wi+1,i

= Pi+1(0) + (1− si)Ti+1(0).

Tangential Constraints

Let us review the whole surface, dropping the interpolant and blend argu-

ments once again (with Qk = Qk(s∗k, d
∗
k) instead of Qk,k−1):

∂

∂u
S(u, v) =

(
∂

∂si−1
Ri−1 +

∂

∂d∗i
Qi

)
· ∂si−1

∂u
·Bi,i−1

+
(

∂

∂di−1
Ri−1 −

∂

∂s∗i
Qi

)
· ∂di−1

∂u
·Bi,i−1

+
∂

∂si
Ri ·

∂si

∂u
+

∂

∂di
Ri ·

∂di

∂u

+
(

∂

∂si+1
Ri+1 −

∂

∂s∗i+1

Qi+1

)
· ∂si+1

∂u
·Bi+1,i

+
(

∂

∂di+1
Ri+1 −

∂

∂d∗i+1

Qi+1

)
· ∂di+1

∂u
·Bi+1,i.

This holds, because

∂d∗i
∂u

= −∂si−1

∂u
,

∂s∗i
∂u

=
∂di−1

∂u
,

∂s∗i+1

∂u
=
∂si+1

∂u
,

∂d∗i+1

∂u
=
∂di+1

∂u
.

104 APPENDIX A. GENERALIZED COONS PATCH � PROOF

Note that the signs are �ipped where we derive by d∗, which is good, since

the role of the second argument in Q has also changed.

Let's examine the terms containing Q:

∂

∂d∗i
Qi = Ti(0) + s∗iWi,i−1 = Ti(0) + siWi,i−1,

∂

∂s∗i+1

Qi+1 = Ti(1) + d∗i+1Wi+1,i = Ti(1) + (1− si)Wi+1,i,

∂

∂s∗i
Qi = Ti−1(1) + d∗iWi,i−1 = Ti−1(1),

∂

∂d∗i+1

Qi+1 = Ti+1(0)− s∗i+1Wi+1,i = Ti+1(0).

These all cancel out the corresponding R terms, which, repeating the same

argument with v partial derivatives, ends our proof.

Appendix B

Parabolic Parameterization �

Proof

We are going to prove that the parabolic parameterization proposed in Sec-

tion 4.4.3.2 satis�es all the properties (4.5)�(4.10) listed in Section 4.4.1.

Requirements (4.5) and (4.7) follow from the bilinear parameterization.

If (u, v) is on the base side, we have v = 0 and consequently dl = dr = 0, so

di = 0 as well (4.6). If (u, v) is on the left side, we have ŝ = 0, so qv = av and

thus dl = v/av. Also, si = 0, hence di = dl, which means that di is linear on

the left side. The same is true for the right side, proving (4.8).

For the last two constraints, (4.9) and (4.10), we will only show ∂di+1

∂u
=

−∂si

∂u
, the other proofs are similar. Once again, if (u, v) is on the left side, we

have si = 0, so
∂

∂u
di =

∂

∂u
dl =

∂

∂u

v

qv(ŝ)
,

while
∂

∂u
si−1 =

∂

∂u

v

av + (dv − av)si

,

because

(u, v) = si−1(si, 0) + (1− si−1)(A+ (D − A)si),

and thus

v = (1− si−1)(av + (dv − av)si)

105

106 APPENDIX B. PARABOLIC PARAMETERIZATION � PROOF

and

si−1 = 1− v

av + (dv − av)si

.

Since ŝ = 0 = si, we have qv(ŝ) = av = av + (dv − av)si. We only need to

prove that their derivatives are also the same.

∂

∂u
(av + (dv − av)si) = (dv − av)

∂si

∂u
,

∂

∂u
qv(ŝ) = 2(bv − av)

∂ŝ

∂u
.

We know that si = (1− 2λ)ŝ2 + 2λŝ near the left side, and it follows that

∂si

∂u
= (2(1− 2λ)ŝ+ 2λ)

∂ŝ

∂u
= 2λ

∂ŝ

∂u
.

Since

bv − av = λ(dv − av),

we arrive at

∂

∂u
qv = 2λ(dv − av)

∂ŝ

∂u
=

∂

∂u
(av + (dv − av)si),

concluding our proof.

Appendix C

Composite Ribbon Patch � Proof

In the following sections, we will examine the i-th curved ribbon, and prove

that it behaves the same way (in positional and tangential sense) as Ri for

points of the i-th boundary curve, which proves that the patch interpolates

the prescribed boundary data.

C.1 Positional Constraints

The i-th curved ribbon has an (s, d) = (si, di) local parameterization, where

d is zero for points on the i-th side (4.6), giving H(d) = 1. Looking at the

ribbons at such an (s0, 0) point, we can see that the left correction patch

cancels out the contribution of the left ribbon:

Rl
i(s0, 0) = Pi−1(1) + s0Ti−1(1)

= Pi(0) + s0Ti−1(1) = Ql
i(s0, 0),

and the right correction patch cancels out the contribution of the right ribbon:

Rr
i (s0, 0) = Pi+1(0) + (1− s0)Ti+1(0) = Qr

i (s0, 0).

This leaves only the central ribbon:

Ci(s0, 0) = Ri(s0, 0) = Pi(s0).

107

108 APPENDIX C. COMPOSITE RIBBON PATCH � PROOF

For a point on the (i + 1)-th side, the local parameterization has s = 1

(4.7). At a (1, d0) point the right correction patch cancels out the contribu-

tion of the central ribbon:

Ri(1, d0) = Pi(1) + d0Ti(1)

= Pi+1(0) + d0Ti(1) = Qr
i (1, d0),

and since H(1) = 0, the left ribbon and correction patch, blended by H(s),

also vanish, leaving only

Ci(1, d0) = Rr
i (1, d0) = Pi+1(d0).

Finally, for a point on the (i− 1)-th side, the local parameterization has

s = 0 (4.7). At a (0, d0) point the left correction patch cancels out the

contribution of the central ribbon:

Ri(0, d0) = Pi(0) + d0Ti(0) = Ql
i(0, d0),

and since H(1) = 0, the right ribbon and correction patch, blended by H(1−
s), also vanish, leaving only

Ci(0, d0) = Rl
i(0, d0) = Pi−1(1− d0).

Accumulating the previous results and using the fact that all the blend

functions vanish except for Bi−1, Bi and Bi+1, the surface equation for a

point on the i-th side becomes the following:

S(u0, v0) =
1

2
(Pi(di−1)Bi−1(d1, . . . , dn)+

Pi(si)Bi(d1, . . . , dn) +

Pi(1− di+1)Bi+1(d1, . . . , dn)) .

Using the parameterization requirement di−1 = si = 1− di+1 (4.8) this sim-

pli�es to

S(u0, v0) = Pi(si)
1

2
(Bi−1 +Bi +Bi+1) = Pi(si).

C.2. TANGENTIAL CONSTRAINTS 109

C.2 Tangential Constraints

We follow the same process to prove that correct derivatives are produced.

Note that
∂

∂s
H(0) =

∂

∂s
H(1) =

∂

∂d
H(0) =

∂

∂d
H(1) = 0.

First, for a point on the i-th side, (s0, 0), the left correction patch cancels

out the contribution of the left ribbon for both s- and d-derivatives:

∂

∂s
Rl

i(s0, 0) = Ti−1(1) =
∂

∂s
Ql

i(s0, 0),

∂

∂d
Rl

i(s0, 0) = − ∂

∂d
Pi−1(1)− s0

∂

∂d
Ti−1(1)

= Ti(0) + s0Wi,i−1 =
∂

∂d
Ql

i(s0, 0),

and the right correction patch cancels out the contribution of the right ribbon:

∂

∂s
Rr

i (s0, 0) = −Ti+1(0) =
∂

∂s
Qr

i (s0, 0),

∂

∂d
Rr

i (s0, 0) =
∂

∂d
Pi+1(0) + (1− s0)

∂

∂d
Ti+1(0)

= Ti(1) + (1− s0)Wi+1,i =
∂

∂d
Qr

i (s0, 0).

This leaves only the central ribbon:

∂

∂s
Ci(s0, 0) =

∂

∂s
Ri(s0, 0) =

∂

∂s
Pi(s0),

∂

∂d
Ci(s0, 0) =

∂

∂d
Ri(s0, 0) = Ti(s0).

For a point on the (i + 1)-th side, the local parameterization has s = 1

(4.7). At a (1, d0) point the right correction patch cancels out the contribu-

tion of the central ribbon:

∂

∂s
Ri(1, d0) =

∂

∂s
Pi(1) + d0

∂

∂s
Ti(1)

= −Ti+1(0)− d0Wi+1,i =
∂

∂s
Qr

i (1, d0),

110 APPENDIX C. COMPOSITE RIBBON PATCH � PROOF

∂

∂d
Ri(1, d0) = Ti(1) =

∂

∂d
Qr

i (1, d0),

and since H(1) = 0, the left ribbon and correction patch, blended by H(s),

also vanish, leaving only

∂

∂s
Ci(1, d0) =

∂

∂s
Rr

i (1, d0) = −Ti+1(d0),

∂

∂d
Ci(1, d0) =

∂

∂d
Rr

i (1, d0) =
∂

∂d
Pi+1(d0).

Finally, for a point on the (i− 1)-th side, the local parameterization has

s = 0 (4.7). At a (0, d0) point the left correction patch cancels out the

contribution of the central ribbon:

∂

∂s
Ri(0, d0) =

∂

∂s
Pi(0) + d0

∂

∂s
Ti(0)

= Ti−1(1) + d0Wi,i−1 =
∂

∂s
Ql

i(0, d0),

∂

∂d
Ri(0, d0) = Ti(0) =

∂

∂d
Ql

i(0, d0),

and the right ribbon and correction patch also vanish, leaving only

∂

∂s
Ci(0, d0) =

∂

∂s
Rl

i(0, d0) = Ti−1(1− d0),

∂

∂d
Ci(0, d0) =

∂

∂d
Rl

i(0, d0) = − ∂

∂d
Pi−1(1− d0).

Using the fact that all the blend functions vanish except for Bi−1, Bi and

Bi+1 (and even these vanish in the derivatives), the surface equation for a

point on the i-th side becomes the following:

∂

∂u
S(u0, v0) =

1

2

[(
∂

∂si−1

Ci−1(si−1, di−1)
∂si−1

∂u
+

∂

∂di−1

Ci−1(si−1, di−1)
∂di−1

∂u

)
Bi−1+(

∂

∂si

Ci(si, di)
∂si

∂u
+

∂

∂di

Ci(si, di)
∂di

∂u

)
Bi +(

∂

∂si+1

Ci+1(si+1, di+1)
∂si+1

∂u
+

∂

∂di+1

Ci+1(si+1, di+1)
∂di+1

∂u

)
Bi+1

]

C.2. TANGENTIAL CONSTRAINTS 111

Substituting the above computed values for the Coons ribbons (adjusting

the indices accordingly), we get

∂

∂u
S(u0, v0) =

1

2

[(
∂

∂di−1

Pi(di−1)
∂di−1

∂u
+ Ti(di−1)

∂si−1

∂u

)
Bi−1+(

∂

∂si

Pi(si)
∂si

∂u
+ Ti(si)

∂di

∂u

)
Bi +(

− ∂

∂di+1

Pi(1− di+1)
∂di+1

∂u
+ Ti(1− di+1)

∂si+1

∂u

)
Bi+1

]
.

Using the parameterization requirement di−1 = si = 1−di+1 (4.8), the above

equation becomes

∂

∂u
S(u0, v0) =

1

2

[(
∂

∂si

Pi(si)
∂di−1

∂u
+ Ti(si)

∂si−1

∂u

)
Bi−1+(

∂

∂si

Pi(si)
∂si

∂u
+ Ti(si)

∂di

∂u

)
Bi +(

− ∂

∂si

Pi(si)
∂di+1

∂u
+ Ti(si)

∂si+1

∂u

)
Bi+1

]
,

that is, the derivative vector will be a combination of the si- and di-derivatives

of Ri (
∂

∂si
Pi(si) and Ti(si), respectively). This means that the derivative of S

is in the tangent plane of Ri. If we also require ∂di−1

∂u
= ∂si

∂u
and ∂di+1

∂u
= −∂si

∂u

(4.9 and 4.10), this simpli�es to the u-derivative of Ri:

∂

∂u
S(u0, v0) =

(
∂

∂si

Pi(si)
∂si

∂u
+ Ti(si)

∂di

∂u

)
Bi−1 +Bi +Bi+1

2

=
∂

∂si

Pi(si)
∂si

∂u
+ Ti(si)

∂di

∂u
.

The same reasoning works for the v-derivative.

112 APPENDIX C. COMPOSITE RIBBON PATCH � PROOF

Bibliography

[1] S.-H. Bae, R. Balakrishnan, K. Singh, Everybodylovessketch: 3d sketch-

ing for a broader audience, in: Proceedings of the 22nd annual ACM

symposium on User interface software and technology, UIST '09, ACM,

New York, NY, USA, 2009, pp. 59�68.

[2] E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbi-

trary topological meshes, Computer-Aided Design 10 (6) (1978) 350�

355.

[3] P. Charrot, J. A. Gregory, A pentagonal surface patch for computer

aided geometric design, Computer Aided Geometric Design 1 (1) (1984)

87�94.

[4] S. A. Coons, Surfaces for computer-aided design of space forms, Tech.

rep., Massachusetts Institute of Technology, Cambridge, MA, USA

(1967).

[5] M. Eck, J. Hadenfeld, Local energy fairing of b-spline curves, in: H. Ha-

gen, G. E. Farin, H. Noltemeier, R. F. Albrecht (eds.), Geometric Mod-

elling, vol. 10 of Computing Supplement, Springer, 1995, pp. 129�147.

[6] G. Farin, Curves and surfaces for CAGD: a practical guide, 5th ed.,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[7] G. Farin, G. Rein, N. Sapidis, A. Worsey, Fairing cubic b-spline curves,

Computer Aided Geometric Design 4 (1987) 91�103.

[8] F. Glover, Tabu search, ORSA Journal on Computing 1 (3) (1989) 190�

206.

113

114 BIBLIOGRAPHY

[9] J. A. Gregory, Smooth interpolation without twist constraints, in: R. E.

Barnhill, R. F. Riesenfeld (eds.), Computer Aided Geometric Design;

Proceedings of a Conference Held at the University of Utah, Salt Lake

City, Utah, March 18-21, 1974, Academic Press, Inc., Orlando, FL, USA,

1974, pp. 71�88.

[10] G. Greiner, Curvature approximation with application to surface model-

ing, in: J. Hoschek, P. Kaklis (eds.), Advanced Course on FAIRSHAPE,

Teubner Stuttgart, 1996, pp. 241�252.

[11] J. Hadenfeld, Local energy fairing of b-spline surfaces, in: M. Daehlen,

T. Lyche, L. L. Schumaker (eds.), Mathematical Methods for Curves

and Surfaces, Vanderbilt University Press, 1995, pp. 203�212.

[12] S. Hahmann, Shape improvement of surfaces, Geometric Modelling 13

(1998) 135�152.

[13] S. Hahmann, S. Konz, Knot-removal surface fairing using search strate-

gies, Computer-Aided Design 30 (2) (1998) 131�138.

[14] T. Hermann, G. Lukács, F.-E. Wolter, Geometrical criteria on the higher

order smoothness of composite surfaces, Computer Aided Geometric

Design 16 (9) (1999) 907�911.

[15] T. Hermann, G. Renner, Subdivision of n-sided regions into four-sided

patches, in: Proceedings of the 3rd IMA Conference on the Mathematics

of Surfaces, Clarendon Press, New York, NY, USA, 1989, pp. 347�357.

[16] K. L. Hsu, D. M. Tsay, Corner blending of free-form n-sided holes, IEEE

Computer Graphics and Applications 18 (1998) 72�78.

[17] K. Kato, n-sided surface generation from arbitrary boundary edges, in:

P.-J. Laurent, P. Sablonnière, L. L. Schumaker (eds.), Curve and Surface

Design: Saint-Malo 1999, Innovations in Applied Mathematics, Vander-

bilt University Press, Nashville, TN, 2000, pp. 173�181.

BIBLIOGRAPHY 115

[18] L. P. Kobbelt, Discrete fairing and variational subdivision for

freeform surface design, The Visual Computer 16 (2000) 142�158,

10.1007/s003710050204.

[19] I. Kozen, The realistic modeling technique for computer aided indus-

trial art and design system which enable creative crafting works, or

�monozukuri� (in japanese), Jidousha Gijutsu 64 (6) (2010) 18�24.

[20] J.-Y. Lai, W.-D. Ueng, G2 continuity for multiple surfaces �tting, The

International Journal of Advanced Manufacturing Technology 17 (2001)

575�585, 10.1007/s001700170141.

[21] E. T. Y. Lee, Energy, fairness, and a counterexample, Computer-Aided

Design 22 (1) (1990) 37�40.

[22] P. Malraison, A bibliography for n-sided surfaces, in: Mathematics of

Surfaces (VIII), Information Geometers, Winchester, UK, 1998, pp. 419�

430.

[23] H. Moreton, C. Séquin, Surface design with minimum energy networks,

in: Proceedings of the �rst ACM symposium on Solid modeling foun-

dations and CAD/CAM applications, SMA '91, ACM, New York, NY,

USA, 1991, pp. 291�301.

[24] H. P. Moreton, C. H. Sequin, Minimum variation curves and surfaces

for computer-aided geometric design, in: N. S. Sapidis (ed.), Designing

Fair Curves and Surfaces, SIAM, 1994, pp. 123�159.

[25] B. Numerov, Note on the numerical integration of d2x/dt2 = f(x, t),

Astronomische Nachrichten 230 (19) (1927) 359�364.

[26] J. Pegna, F.-E. Wolter, Geometrical criteria to guarantee curvature con-

tinuity of blend surfaces, Journal of Mechanical Design 114 (1) (1992)

201�210.

[27] L. Piegl, W. Tiller, The NURBS book (2nd ed.), Springer-Verlag New

York, Inc., New York, NY, USA, 1997.

116 BIBLIOGRAPHY

[28] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numer-

ical recipes in C (2nd ed.): the art of scienti�c computing, Cambridge

University Press, New York, NY, USA, 1992.

[29] J. Roulier, T. Rando, Measures of fairness for curves and surfaces, in:

N. S. Sapidis (ed.), Designing Fair Curves and Surfaces, SIAM, 1994,

pp. 75�122.

[30] P. Salvi, H. Suzuki, T. Várady, Fast and local fairing of b-spline curves

and surfaces, in: Proceedings of the 5th international conference on Ad-

vances in geometric modeling and processing, GMP'08, Springer-Verlag,

Berlin, Heidelberg, 2008, pp. 155�163.

[31] P. Salvi, T. Várady, Local fairing of freeform curves and surfaces, in:

Proceedings of the Third Hungarian Conference on Computer Graphics

and Geometry, 2005, pp. 113�118.

[32] P. Salvi, T. Várady, Constrained fairing of freeform surfaces, in: Pro-

ceedings of the Fifth Hungarian Conference on Computer Graphics and

Geometry, 2010, pp. 65�72.

[33] P. Salvi, T. Várady, Hierarchical surface fairing with constraints, in:

Proceedings of the 14th ACM Symposium on Solid and Physical Mod-

eling, SPM '10, ACM, New York, NY, USA, 2010, pp. 195�200.

[34] P. Salvi, T. Várady, H. Suzuki, Local fairing of curves and surfaces, in:

Proceedings of JSPE Semestrial Meeting, vol. 2007S, 2007, pp. 11�12.

[35] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng,

T. Lyche, T-spline simpli�cation and local re�nement, in: ACM SIG-

GRAPH 2004 Papers, SIGGRAPH '04, ACM, New York, NY, USA,

2004, pp. 276�283.

[36] T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-

NURCCs, in: ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, ACM,

New York, NY, USA, 2003, pp. 477�484.

BIBLIOGRAPHY 117

[37] T. Várady, Survey and new results in n-sided patch generation, in: Pro-

ceedings on Mathematics of surfaces II, Clarendon Press, New York,

NY, USA, 1988, pp. 203�235.

[38] T. Várady, Overlap patches: a new scheme for interpolating curve net-

works with n-sided regions, Computer Aided Geometric Design 8 (1)

(1991) 7�27.

[39] T. Várady, T. Hermann, Best �t surface curvature at vertices of topo-

logically irregular curve networks, in: Proceedings of the 6th IMA Con-

ference on the Mathematics of Surfaces, Clarendon Press, New York,

NY, USA, 1996, pp. 411�427.

[40] T. Várady, R. Martin, Reverse engineering, in: Handbook of Computer

Aided Geometric Design, chap. 26, Elsevier, 2002, pp. 193�229.

[41] T. Várady, A. Rockwood, Geometric construction for setback vertex

blending, Computer-Aided Design 29 (6) (1997) 413�425.

[42] T. Várady, A. Rockwood, P. Salvi, Trans�nite surface interpolation over

irregular n-sided domains, Computer Aided Design 43 (2011) 1330�1340.

[43] T. Várady, P. Salvi, A. Rockwood, Trans�nite surface interpolation with

interior control, Graphical Models (under revision).

[44] V. Weiss, L. Andor, G. Renner, T. Várady, Advanced surface �tting

techniques, Computer Aided Geometric Design 19 (1) (2002) 19�42.

