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Abstract
Bézier curves are designed using control points, but—for larger degrees—moving an individual point may have
very little effect on the shape of the curve. Proximity curves introduce a new parameter that controls the pulling
force of the control points. Here we propose a very simple method for the proximity control of polynomial curves,
and discuss its advantages and shortcomings.

1. Introduction

Control point based curves are prevalent in computer-aided
geometric design. Control points offer a natural way to in-
fluence the shape of a curve, but sometimes—and this is es-
pecially true in the case of high-degree Bézier curves—the
effect of a single control point is so little that local features
are hard to introduce. Consequently, there is a need to con-
trol how close the curve runs to the control points, i.e., the
proximity of the curve.

Here we deal exclusively with C∞-continuous curves.
Also, while proximity values can be specified independently
for each control point, we will only treat the global case. Lo-
cal variants can be constructed in a straightforward fashion.

Rational Bézier curves also associate a weight with each
control point, so it is instructive to see why it does not
solve the proximity problem. Figure 1 shows a rational curve
where all internal control points have a weight of 50, while
the endpoints have unit weight. The curve closely approxi-
mates the first and last control segments, but runs far from
the three central control points. The corresponding basis
functions are compared to the simple sextic Bézier basis in
Figure 2. We can see that the three central basis functions
are hardly affected. This is because what counts is the rela-
tive magnitude of adjacent weights. (Proximity criteria can
be satisfied, in theory, by setting the weights to wi = t i(n−i),
where n is the degree,1 but these quickly explode numeri-
cally, and distort the parameterization.)

We propose a very simple construction: replicate internal
control points. A control polygon where each point is dou-
bled (tripled etc.) naturally has a stronger pull on the curve.
After a short review of related work in Section 2, we give a

Figure 1: A rational Bézier curve with large internal weights.

more formal treatment of our method in Section 3. This is
followed by a discussion of pros and cons in Section 4, also
including some alternative research directions.

2. Previous work

A recent paper4 introduces a class of proximity basis func-
tions that can reproduce Bézier and B-spline curves or sur-
faces. We will show some comparisons to P-Bézier curves in
Section 4.1.

The above paper and its predecessor3 (which coined the
term proximity curve) has an extensive literature review.
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(a) w = [1,1,1,1,1,1,1]

(b) w = [1,50,50,50,50,50,1]

Figure 2: Comparison of degree-6 rational basis functions.

Here we just note that recent advances include a NURBS-
based approach2, cyclic proximity curves7 and a proximity
variant6 of κ-curves.8

3. µ-Bézier curves

Given a Bézier curve

C(u) =
n

∑
i=0

PiB
n
i (u) (1)

of degree n, and a global multiplicity parameter µ, the µ-
Bézier proximity curve is a Bézier curve of degree n̂ = µ ·
(n−1)+1, with control points

P̂i =


P0 for i = 0,
P⌊(i+µ−1)/µ⌋ for 0 < i < n̂,
Pn for i = n̂.

(2)

Note that this is only a hidden representation; the designer
uses the Pi control points to modify the curve.

Conversely, the basis functions associated with the origi-
nal control points are the sums of n̂-degree Bernstein poly-

nomials:

B̂n
i (u) =


Bn̂

0(u) for i = 0,

∑
µ·i
j=1+µ·(i−1) Bn̂

j(u) for 0 < i < n,

Bn̂
n̂(u) for i = n.

(3)

Consequently the curve can be expressed as

C(u) =
n̂

∑
i=0

P̂iB
n̂
i (u) =

n

∑
i=0

PiB̂
n
i (u). (4)

Figure 3 shows quintic basis functions with different µ val-
ues.

4. Discussion

In this section we compare µ-Bézier and P-Bézier curves,
and explore paths to remedy its shortcomings.

4.1. Comparison with P-Bézier curves

Figure 4 compares the basis functions of µ-Bézier and P-
Bézier curves. Here the γ proximity parameter of the P-
Bézier construction is chosen such that the resulting basis
resembles the µ-Bézier basis in the same plot. It is apparent
that while the internal functions are quite similar, those at the
end are much larger for µ-Bézier curves. This means that the
first and last control segments are approximated much faster
than the others.

Another difference is that while the γ parameter is con-
tinuous, i.e., it defines a continuum of curves between the
Bézier curve and the control polygon, the µ parameter is dis-
crete. While it does approximate the control polygon as µ
approaches infinity, the first steps leave out much of the pos-
sible design space, see a comparison in Figure 5.

On the positive side, while P-Bézier curves use a rational
basis, involving square roots, µ-Bézier curves are polyno-
mial, and as such, CAD-compatible.

4.2. Adding more refinement

A finer range of proximity curves can be generated if we in-
sert two new points near each inner control point, instead of
replicating the original ones. An extra α ∈ [0.5,1] parameter
controls the position of the new points on the segments:

Pnew
i,1 = (1−α)Pi−1 +αPi,

Pnew
i,2 = (1−α)Pi+1 +αPi. (5)

When α = 1, this is the same as a µ-Bézier curve with µ = 3.
This can also be iterated; Figure 6 shows an example after 3
iterations with different α values.

4.3. Proximity by approximation

The degree of the generated curves is relatively high. An al-
ternative approach that could keep the degree down is to use
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Figure 3: Quintic basis functions with µ = 1, 2 (top row), and µ =3, 4 (bottom row).

Figure 4: Comparison of µ-Bézier basis functions (MB) to the P-Bézier basis (PB), using similar γ values.
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Figure 5: Comparison of µ-Bézier curves (top, µ = 1, . . . ,7)
to P-Bézier curves4 (bottom, image used with permission).

fitting. Take a target proximity curve f : [0,1]→R2, e.g. a P-
Bézier curve, or just the control polygon itself, and try to find
an approximation by a Bézier curve of moderately higher de-
gree.

A naïve approximation of sampled points would result in
large fluctuations in the control polygon. Adding smoothing
terms is a viable approach, but its effects are hard to predict.

We will use a displacement approach. The idea is to ele-
vate the degree of the original curve, step by step, until the
desired degree N is reached, and in each step we add dis-
placements to its control points based on the deviation of its
footpoints from the corresponding points of f . Let us define

C(0)(u) =
n

∑
i=0

P(0)
i Bn

i (u) =C(u). (6)

In the first step we perform a degree elevation, obtaining
control points P̂(0)

i (i = 0 . . .n+ 1). Then in each step, we
define

C(k)(u) =
n+k

∑
i=0

P(k)
i Bn+k

i (u), (7)

where

P(k)
i = P̂(k−1)

i +

[
f
(

i
n+ k

)
−C(k−1)

(
i

n+ k

)]
. (8)

After N −n steps, we arrive at

Ĉ(u) =C(N−n)(u). (9)

(a) α = 1
2

(b) α = 2
3

(c) α = 1 (µ-Bézier curve)

Figure 6: Fine(r) proximity control (3 iterations, degree 36).

4.3.1. More iterations

The procedure outlined above was a sequence of alternat-
ing degree elevations and displacements. We could, however,
perform several displacement steps before moving on to the
next degree. Formally, if the iteration count was J, we define

C(k)(u) =C(k,J)(u), (10)

where

C(k, j)(u) =
n+k

∑
i=0

P(k, j)
i Bn+k

i (u), (11)
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P(k, j)
i =

{
P̂(k−1)

i for j = 0,

P(k, j−1)
i + f (ui)−C(k−1, j−1)(ui) for j > 0,

(12)

and ui = i/(n+ k).

Note that choosing a large J would mean that in each step
we do a progressive-iterative approximation (PIA),5 which
is the same as if we interpolated f at the footpoint param-
eters, resulting in a highly oscillating control polygon, see
Figure 7b. On the other hand choosing J value of around 5
can accelerate the approximation, and would allow the same
error range with lower degree, see Figure 7c.

A drawback of this method is that it does not preserve
the convex hull. We can constrain the displacements so that
control points always stay inside, but this blunts the proxim-
ity effect, see Figure 8. Here we see a fit first without, then
with the convex hull constraint. For similar results a higher-
degree curve is needed, but then the µ-Bézier curve fares just
as well, see Figure 8d.

Conclusion

We have proposed a very simple method for creating polyno-
mial proximity curves; limitations include high degree and
coarse gradation. Some avenues for the lifting of these prob-
lems were also investigated.
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