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Abstract

One major issue in CAGD is to model complex objects using free-form surfaces of general topology. A natural ap-
proach is curvenet-based design, where designers directly create and modify feature curves. These are interpolated
by smoothly connected, multi-sided patches, which can be represented by transfinite surfaces, defined as a combina-
tion of side interpolants or ribbons. A ribbon embeds Hermite data, i.e., prescribed positional and cross-derivative
functions along boundary curves.

The paper focuses on two transfinite schemes: the first is an enhanced and extended variant of a multi-sided gen-
eralization of the classical Coons patch [43]; the second one is based on a new concept of combining doubly curved
composite ribbons, each one interpolating three adjacent sides. Main contributions include various ribbon parameter-
izations that surpass former methods in quality and computational efficiency. It is proven that these surfaces smoothly
interpolate the prescribed ribbon data. Both formulations are based on non-regular convex polygonal domains and
distance-based, rational blending functions. A few examples illustrate the results.

Keywords: transfinite surface interpolation, n-sided surfaces, ribbons, distance-based blending functions,
parameterization

1. Introduction

Curvenet-based design is a natural approach to create complex free-form models in three dimensions. The process
begins with creating a curve network representing the boundaries and feature lines of the object. These curves may
come from several sources, such as traditional blueprints, 2D sketches, or directly through some sophisticated 3D
graphical user interface, such as [1, 18], then the interpolating surfaces are expected to be automatically generated
over the curve network. Transfinite surfaces are particularly suitable for this approach, since they are determined
solely by boundary curves and cross-derivatives.

It is hard to compare transfinite schemes with other types of general topology surfaces, such as (i) trimmed
parametric surfaces, (ii) subdivision surfaces or (iii) split n-sided surfaces. Trimmed surfaces are typically defined
by a grid of control points, in contrast to transfinite patches that require only the boundary information. Certain
symmetric n-sided configurations cannot be achieved by trimmed surfaces, for example a regular 3- or 5-sided patch
cannot be exactly represented over a 4-sided domain. While the boundary edges over the four sides of the parametric
domain can be directly edited in 3D, the internal trimming curves cannot. As for continuity, stitching parametric
surfaces along general trimming curves can be achieved only in a numerical sense, controlled by tolerances; however,
for transfinite patches accurate “watertight” stitching is possible.

Subdivision surfaces offer a highly intuitive technique to produce smoothly connected, general topology surfaces
derived from a control polyhedra, but interpolating a network of prescribed boundaries and cross-derivatives is a
difficult task. To match a given network, first a good initial control polyhedron must be found, then the subdivision
rules need to be modified to obtain an interpolating limit surface. Related work on interpolating curve networks by
subdivision can be found in e.g. [24, 29, 26].

There are CAD systems that use only stitched quadrilaterals, and when an n-sided patch needs to be represented,
it is subdivided — in most cases — using the central split scheme. This may seem to be a good solution, but it is
not easy to determine optimal splitting curves and a good center point, or to resolve compatibility constraints [32].
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T-splines also represent surfaces in this category [40], where the connection of adjacent patches with different knot
vectors is efficiently solved. Recent work on n-sided patches composed of quadrilaterals include [21, 25, 3].

Our work is motivated by designers and stylists, who want to focus on controllable boundary curves and ribbons.
They expect nice, predictable and smoothly connected surfaces, and would like to avoid dealing with intricacies
not related to design intent. Transfinite patches are attractive for real-time curve editing with immediate surfacing
response. It is a disadvantage, however, that these surfaces are defined by high-degree rational polynomials in a
non-standard format. Strictly local control can be an advantage, though some applications may demand for a global
optimization over large curve networks; this may be the subject of future research.

This paper expands former work by the same authors and also introduces a new transfinite formulation using
composite ribbons. The concept of multi-sided generalization of Coons patches appeared in [43], while composite
ribbons were recently outlined in a short paper [41]. Here we present the necessary boundary conditions and proofs
of continuity for both formulations in details, which was formerly impossible due to space limitations. We also
introduce new ribbon parameterizations that surpass former methods in terms of quality and computational efficiency.
After reviewing related work in Section 2, we revisit classical topics, such as Hermite curves and Coons patches, that
will help to reformulate the equations leading to the new schemes (Section 3). We summarize the basic elements
of multi-sided surface constructions in Section 4, and discuss various ribbon parameterizations with and without
constraints. The actual surface formulations are described in Sections 5 and 6. We analyze our results in Section 7,
then suggestions for future work conclude the paper.

2. Previous work

There is an extensive and diverse literature on transfinite methods. These differ in several aspects, including (i)
the number of boundaries, (ii) the cross-derivative constraints (C1, G1 or G2 ) between adjacent surfaces, (iii) the
definition of the interpolants, (iv) the type of blending functions, and (v) the method of parameterization, i.e., how the
interpolants are mapped onto the domain and vice versa.

In the classical work of Coons [6] four boundaries were interpolated. This was followed by Gordon’s extension to
interpolate a grid of curves by quadrilaterals [14]. Then transfinite patches with three sides were investigated [2, 30]
followed by 5-sided [5] and later general n-sided schemes [16]. Inserting two-sided or even one-sided patches has also
become important, in order to complete general topology curve networks, see e.g. [38, 44]. Initially, domains were
regular polygons, but later non-convex polygons and domains with internal hole loops were also proposed [22, 35].
The use of non-regular 2D domains was suggested in [43].

While Coons’ 4-sided patches can be extended to C1 or C2 in a relatively simple manner by raising the degrees of
the Hermite blending functions, most n-sided methods achieve only G1 continuity. Extension to G2 in a general way
is not so easy (see e.g. [17, 13]), and it generally requires further constraints related to the defining curve network.
Important contributions concerning minimum energy curve networks, compatibility constraints, and conditions for G2

curvenets can be found in [28, 31] and [19], respectively.
At the beginning side-based interpolations dominated the field (see Coons-like patches and surfaces in [22, 37, 23].

Later corner interpolants were suggested as well, e.g. [5, 33, 42]. Many schemes, including Coons patches, need
correction terms in the formulae to satisfy the interpolating constraints.

An interesting concept of permanence was suggested in [9], which requires a shrinking domain polygon with
edges parallel to the original sides to be mapped onto an n-sided subpatch of the same kind. This is a challenging idea
— currently no solution is known for n , 4.

There is a fairly wide variety of blending functions and parameterization methods [43]. For general n-sided
patches, mostly “tricky” rational functions based on special distances are computed within the domain, for example
in [16, 22, 43]. In Sabin’s early paper [36] it is shown that rational polynomial parameterization by two domain
variables is not possible for n > 6.

Generalized barycentric coordinates [11, 20] provide a good basis for parameterizing polygonal domains (see
also Section 4.5). Recent publications extend this theory to interpolate Hermite data — continuous functions and
derivatives — over polygons and curved boundaries (see moving least squares coordinates [27] and transfinite mean
value interpolation [7, 4]).

Recent developments of transfinite surfaces include Coons patches having geodesic boundaries [10], and methods
to adjust the shape interior of transfinite patches while retaining their boundaries [44].
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Figure 3.1: Coons patch with circular indexing.

3. Preliminaries

First we revisit and reformulate basic curve and surface equations to introduce our new n-sided surface schemes.
Instead of separate positional and tangential data, we combine ribbons, i.e., continuous quadrilaterals having their
own local parameterization. Generally ribbons are parameterized linearly by a distance parameter; in this paper we
propose a rational ribbon reparameterization that reproduces Hermite cubics and Coons patches.

3.1. Parametric cubic curves
A cubic Hermite curve interpolates four discrete quantities, two endpoints P1, P2, and two tangent vectors T1, T2,

each multiplied by the Hermite blending functions

α0(u) = 2u3 − 3u2 + 1, α1(u) = −2u3 + 3u2, β0(u) = u3 − 2u2 + u, β1(u) = u3 − u2,

so
r(u) = P1α0(u) + P2α1(u) + T1β0(u) + T2β1(u).

A similar curve equation can be formulated by combining two continuous, parametric straight line segments,
which we call 2D ribbons (analogously to 3D ribbons used later). For each 2D ribbon let us introduce a local parameter
di, and define the segment with endpoint Pi and tangent Ti as follows:

Ri(di) = Pi + γ(di)Ti, di ∈ [0, 1],

where γ(di) is a scalar function with properties γ(0) = 0 and γ′(0) = 1. Then the curve can be written as

r(u) =
∑
i=1,2

Ri(di)α0(di).

The local ribbon parameters are computed from the parameter of the curve by d1(u) = u, d2(u) = 1 − u. Here only
the first Hermite blending function needs to be used, and T2 is reversed. γ(di) = di would yield a quartic interpolating
curve, however, if we apply a rational γ(di) = β0(di)/α0(di) = di

2di+1 , a curve identical to the original cubic Hermite is
obtained.

3.2. C1 Coons patches
The C1 Coons patch [6] is a four-sided surface S , parameterized in the (u, v) plane (u, v ∈ [0, 1]). It interpolates

four boundaries P1(u), P3(u), P2(v), P4(v) and four cross-derivative functions T1(u), T3(u), T2(v), T4(v) (Fig. 3.1). In
Coons’ original Boolean sum formulation there are three constituents: an interpolant connecting side 1 and 3, another
interpolant connecting side 2 and 4, and a term that corrects unwanted artifacts of the two side-to-side interpolants.
The correction surface contains a combination of constant vectors at the corners, such as Pi(0), P′i(0), Ti(0) and T ′i (0).
In the C1 Coons patch cubic Hermite blending functions are used.

To reformulate the surface equation based on sides, we introduce cyclic indices (with 1 coming after 4), and so-
called side parameters si = si(u, v). The si-s are associated with the i-th side of the domain (i = 1, . . . , 4) and take the
values of u, v, 1 − u and 1 − v, respectively, as shown in Fig. 3.1. For symmetry reasons, the parameterization of the
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boundaries are reversed along sides 3 and 4. Grouping the positional and tangential constraints of Pi(si) and Ti(si),
and splitting the correction surface into four parts (each one corresponding to one corner), we can rewrite the Coons
patch as the composition of four side-based terms minus four corner-based correction terms, as follows:

S (u, v) =

4∑
i=1

[
α0(si+1)
β0(si+1)

]T [
Pi(si)
Ti(si)

]
−

4∑
i=1

[
α0(si+1)
β0(si+1)

]T [
Pi(0) P′i(0)
Ti(0) T ′i (0)

] [
α0(si)
β0(si)

]
.

The derivative of Ti(0) is the twist vector, which is a corner-specific quantity, also denoted by Wi,i−1. We assume that
the twist vectors related to the (i − 1)-th and i-th cross-derivative functions are compatible, i.e.,

Wi,i−1 =
∂

∂si
Ti(0) = −

∂

∂si−1
Ti−1(1).

It is well-known, that when the twist vectors are not compatible, Gregory’s rational twists need to be used [15, 8].
Now let us construct a Coons patch using 3D ribbons, i.e., instead of blending eight one-dimensional vector

functions, let us combine four biparametric surfaces, in a similar fashion as for the cubic curve. The i-th ribbon is
defined as

Ri(si, di) = Pi(si) + γ(di)Ti(si).

Here we use the other local parameter, called distance parameter di = di(u, v), that measures a distance from the i-th
boundary; for di = 0 the positional and tangential constraints are satisfied. In the four-sided case di = 1 − si−1 = si+1
is an obvious choice. The resulting patch equation is

S (u, v) =

4∑
i=1

Ri(si, di)α0(di) −
4∑

i=1

Qi,i−1(si, si−1)α0(si)α1(si−1), (3.1)

where the corner correction patches Qi,i−1 are given as

Qi,i−1(si, si−1) = Pi(0) + γ(1 − si−1)Ti(0) + γ(si)Ti−1(1) + γ(si)γ(1 − si−1)Wi,i−1.

The ribbons are ruled surfaces, the correction patches are doubly curved. If we apply the previous rational γ(di)
functions, this formula will be identical to the original C1 Coons patch. This is the basis of the multi-sided general-
ization presented in Section 5.

4. Multi-sided patches

We investigate multi-sided patches that interpolate n three-dimensional curves Pi(si), 1 ≤ i ≤ n, and related cross-
derivative functions Ti(si) for an arbitrary n ≥ 3. We focus on ribbon-based patches, where ribbons are biparametric
surfaces Ri(si, di) that reproduce prescribed positional and tangential constraints at di = 0. For creating a multi-sided
patch, the following must be provided: (i) n ribbon surfaces, (ii) an n-sided domain polygon, (iii) blending functions,
and (iv) appropriate methods to parameterize the ribbons.

We assume that the patch is defined over a convex polygonal domain Γ in the (u, v) parameter plane, and the
sides of the polygon, Γi, are mapped to the boundaries of the patch. The local side and distance parameters of the
ribbons are computed from (u, v), i.e., si = si(u, v), di = di(u, v), and for each side there is an associated blending
function Bi(u, v) = Bi(d1, . . . , dn). We investigate two different schemes based on the weighted combination of ribbon
surfaces. The first is a generalization of Coons’ Boolean sum scheme with linear ribbons (Eq. 3.1), that also requires
a correction surface (see Section 5), while the second is a combination of doubly curved ribbons (see Section 6), each
interpolating three consecutive sides.

4.1. Ribbons

We briefly describe how ribbons can be created. We assume that for each vertex of the network the crossing curves
define a local tangent plane. For each boundary Pi(si) of a given patch, there exists a normal vector function Ni(si)
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(often called the normal fence) that interpolates the normals at the related corners and minimizes its rotation along the
boundary (see RMF frames [46]). The cross-derivatives of the ribbons are composed by the well-known technique of

∂

∂di
Ri(si, 0) = α(si)

(
Ni(si) ×

∂

∂si
Ri(si, 0)

)
+ β(si)

∂

∂si
Ri(si, 0),

where α(si) and β(si) are scalar functions. Thus, if two adjacent patches share a common normal fence, then both
ribbons, and consequently both multi-sided patches, will be connected with G1 continuity. The scalar functions are to
satisfy end conditions at the corner points (si = 0 and si = 1), but there is further freedom to define these in order to
optimize the shape of the ribbons. For example, by means of the so-called ribbon-handles, which are prescribed cross-
derivatives at the middle point of the boundary (si = 0.5), users can interactively edit ribbons, if needed. Alternatively,
these can be optimized by different fairing algorithms; which is the subject of ongoing research. (Typically, we apply
cubic B-spline boundaries with quadratic or cubic scalar functions.) From now on we will assume that the ribbons
have already been defined, and focus only on the patch formulation.

4.2. Domain polygon

Let Li denote the arc-lengths of the boundary curves, and li the side lengths of the domain. Also let ϕi denote
the corner angles in 3D space, and αi those in the 2D domain. Introducing the constants clength =

∑
Li/

∑
li and

cangle =
∑
ϕi/

∑
αi, where

∑
αi = (n − 2)π, we propose to minimize the expressions

1
n

∑(
Li

liclength
− 1

)2

and
1
n

∑(
ϕi

αicangle
− 1

)2

,

i.e., the arc length and angle distortions between the surface and the domain.
Our experience shows that we can apply a regular polygon, if the above measures remain below prescribed thresh-

olds. However, if the length or angle distortion is high, we strongly recommend using non-regular convex polygons to
avoid unexpected shape artifacts. Instead of solving a non-linear optimization, simple heuristic methods for creating
non-regular domains have been suggested in [43].

4.3. Rational blending functions

Assume that we have a polygonal domain, and for each (u, v) point we determine an n-tuple of distance values.
Each di is associated with the i-th side: di is equal to 0 on side Γi and it increases monotonically as we move away
from Γi. In our patch formulations, we create distance-based rational blending functions to combine ribbons. We
introduce the notation Di1...ik =

∏
j<{i1...ik} d

2
j , where squared distance terms are needed to satisfy G1 constraints.

The simplest blending function proposed by Kato and other authors [22, 43] is

B∗i (d1, . . . , dn) =
Di∑
j D j

= 1/d2
i∑

j 1/d2
j

 , (4.1)

with the property that B∗i = 1 on Γi, and 0 on all other sides Γ j, j < i. (The formula in the parenthesis is equivalent to
the one on the left. It is more efficient to evaluate the reciprocal terms when all di-s are larger than a given threshold.
At the same time, very small di-s can produce numerical instability, when we need to return to the original evaluation
with the Di terms.) This blending function is singular at the corners — fortunately the corner positions and tangents
are uniquely defined by the boundary constraints. Nevertheless, this sort of blending may create uneven curvature
distributions in the vicinity of the boundaries.

Avoiding singular blending functions while retaining the side-based concept was one of the key motivations in our
research to generalize Coons patches. In the four-sided case, the cubic Hermite blending functions ensure interpolation
on Γi and a “gradual” 1 → 0 transition on the sides Γi−1 and Γi+1, as we move from Γi to the opposite side of the
domain. For general n this is impossible by means of the Hermite functions, but it is possible using distance-based
blending functions. For a general n the basic requirement is that the side blending function Bi is equal to 1 on Γi, and
vanishes on all non-adjacent sides Γ j, where j < {i − 1, i, i + 1}, see Figure 4.1 (left).
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Figure 4.1: Blending functions Bi and Bi,i−1 over a six-sided domain.

Before going any further, let us introduce corner blending functions that provide a convenient way to define side
blending functions, and will be later used for correction patches, as well:

Bi,i−1(d1, . . . , dn) =
Di,i−1∑
j D j, j−1

(
=

1/(didi−1)2∑
j 1/(d jd j−1)2

)
.

These functions have also been proposed earlier in the transfinite surface patches of [16, 33], where corner inter-
polants are combined. The corner blend Bi,i−1 yields 1 at the (i− 1, i) corner, and ensures a “gradual” 1→ 0 transition
on sides Γi−1 and Γi as we move towards the i − 1 and i + 1 domain vertices; Bi,i−1 = 0 on all the remaining sides Γ j,
j < {i − 1, i}. See Figure 4.1 (right).

It is easy to show, that by adding together two adjacent corner blends, we obtain the requested properties of side
blending:

Bi(d1, . . . , dn) = Bi,i−1 + Bi+1,i =
Di,i−1 + Di+1,i∑

j D j, j−1
.

Due to the squared terms, most partial derivatives of the blending functions vanish, i.e.,

∂

∂dk
Bi,i−1(d1, . . . , d j = 0, . . . , dn) = 0, j < {i − 1, i}, k ∈ [1 . . . n],

∂

∂d j
Bi,i−1(d1, . . . , d j = 0, . . . , dn) = 0, j ∈ [1 . . . n],

and consequently ∂
∂dk

Bi(d1, . . . , d j = 0, . . . , dn) = 0 for j < {i − 1, i + 1}, k ∈ [1 . . . n]. (For k , i, we get
∂
∂dk

Bi(d1, . . . , di = 0, . . . , dn) = 0 from Bi(d1, . . . , di = 0, . . . , dn) = 1.)
Both the side and corner blending functions will be used in the multi-sided Coons patch (Section 5), while only the

side blends are needed for the composite ribbon patch (Section 6). These blending functions ensure that the ribbons
naturally vanish on the “opposite” sides; the number of terms to be evaluated increases with the number of sides.

4.4. Ribbon parameterization overview

The most crucial issue in transfinite surface generation is ribbon parameterization, i.e., how to compute the local
side and distance parameters (si, di) from a given (u, v) domain point (see Figure 4.2). This is what determines the
associated points of the ribbons and thus has a critical effect on the shape. There are infinitely many possible solutions
to map a four-sided parametric quadrilateral onto an n-sided domain, and our experiments produced a wide variety of
visually similar surfaces with different interior curvatures. We will describe a few interesting solutions.
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Figure 4.2: Ribbon evaluation.

Two groups of ribbon parameterizations are considered. In simple parameterizations (Section 4.5) it is natural to
require that each side parameter s j ( j ∈ [1 . . . n]) is linear, and for a point on Γi

si ∈ [0, 1], di = 0, si−1 = 1, si+1 = 0. (4.2)

The distance parameters d j ( j ∈ [1 . . . n]) also change linearly along the sides, so on the i-th side

di−1 = si, di+1 = 1 − si. (4.3)

For constrained parameterizations (Section 4.6) further properties must also be satisfied for a point on Γi:

∂di−1

∂u
=
∂si

∂u
,

∂di+1

∂u
= −

∂si

∂u
,

∂di−1

∂v
=
∂si

∂v
,

∂di+1

∂v
= −

∂si

∂v
. (4.4)

Figure 4.3: Constrained
parameterization.

Roughly speaking, this means that in the simple case the parameterizations of the
adjacent ribbons match only in a positional sense. For the constrained case these are
identical in a differential sense, as well (see Figure 4.3). These properties are trivially
satisfied for the four-sided Coons patch, but for n-sided domains special construc-
tions are needed. In the evaluation of parameterization methods, there are two main
issues: (i) the constant si, di parameter lines should have an even distribution in the
domain, and (ii) the (u, v) → (si, di) mappings must be simple and computationally
efficient. New parameterization schemes will be introduced in the next two sections.

4.5. Simple parameterizations

A family of simple parameterizations is defined when the si = const isolines are
straight lines in the domain space; as si varies from 0 to 1 these lines sweep from
side Γi−1 to side Γi+1. Methods differ in how the directions change. The simplest is
bilinear mapping defined by a quadrangle, spanned by sides Γi−1, Γi and Γi+1, see
Figure 4.4a. Alternative sweeping line methods include the radial sweep [5] or the
central line sweep [43]. The former constrains all sweep lines to go through a given
point outside the domain, the latter forces the si = 1

2 isolines to go through the center
point of the domain.

For a (u, v) point, the related sweep lines determine the si coordinates. In the
cases n = 3, 4 it is straightforward to use bilinear mapping for computing the di
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Figure 4.4: A five-sided domain with different parameterizations: (a) bilinear, (b) barycentric by Wachspress coordi-
nates, (c) barycentric by modified Wachspress coordinates.

coordinates, as well. For n ≥ 5, the well-known Wachspress coordinates [45, 12] turned out to be a good solution.
The barycentric coordinates λi are defined as

λi(u, v) = wi(u, v)/
∑

k

wk(u, v),

where the individual weights are computed by

wi(u, v) = Ci/(Ai−1(u, v) · Ai(u, v)).

Here Ai−1 = 4(pi−1, (u, v), pi), Ai = 4(pi, (u, v), pi+1) and Ci = 4(pi−1, pi, pi+1) represent triangles [20], whose areas
are incorporated into the above formula. See Figure 4.5.

Then the di distance parameter is computed as

di(u, v) = 1 − (λi−1(u, v) + λi(u, v)),

that satisfies equations (4.2) and (4.3) and edge linearity, due to the properties of Wachspress coordinates. This is a
simple construction, however, the use of more general barycentric coordinates, such as Mean Value Coordinates [11]
or Moving Least Squares [27] is also possible.

As a side note, the distribution of the di isolines can be improved, if we force the di = 1
2 isolines to go through the

center point of the domain. This ensures that the midpoints of the ribbons are mapped to the midpoint of the domain.
Assume that we have central line sweep parameterization, i.e., si = 1

2 holds for the center point. Let us precompute
the Wachspress coordinate of the center point by the original mapping: mi = di(centeru, centerv). Then, to obtain the
(si, d̂i) coordinates of an arbitrary point, apply a quadratic reparameterization, using the original (si, di):

d̂i(si, di) = di · (1 + (1 − si)si · (1 − di)di · wi), (4.5)

see Figure 4.4c.

Figure 4.5: Triangle-based construction of Wachspress coordinates.
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Figure 4.6: Constant parameter lines of the interconnected parameterization.

Here the unknown wi can be determined by substituting the center point (0.5,mi) into the equation:

d̂i(0.5,mi) = mi · (1 + 0.25 · (1 − mi)mi · wi) = 0.5,

thus

wi =
2 − 4mi

(1 − mi)m2
i

.

Note that d̂i must not become negative. Looking at equation (4.5), our condition is that (1 − si)si · (1 − di)di ·wi ≥ −1,
where (1− si)si ≤

1
4 and (1− di)di ≤

1
4 . So wi ≥ −16 is sufficient, resulting in the inequality 8m3

i − 8m2
i + 2mi − 1 ≤ 0,

which limits the range of mi to [0,≈0.877]. In the rare case of higher values, the above improvement cannot be applied.

4.6. Constrained parameterizations

In the following subsections we will propose two parameterizations that satisfy all three requirements (4.2)–(4.4).

4.6.1. Interconnected parameterization
Take arbitrary functions si(u, v) that give 0 for every point on side Γi−1, and 1 everywhere on Γi+1. For all other

points inside the convex domain they return values in [0, 1]. For example, the s coordinates of the bilinear, radial or
central line sweeps are such functions. These naturally satisfy si ∈ [0, 1], si−1 = 1 and si+1 = 0 for a point on Γi. Let us
define a blending function α(t) : [0, 1]→ [0, 1] with α(0) = 1 and α(1) = α′(0) = α′(1) = 0, for example the Hermite
function α0(t) from Section 3, or a variation of the rational blend function presented in Section 4.3: α(t) =

(1−t)2

t2+(1−t)2 .
Now we can define di by means of si−1 and si+1 as follows:

di(u, v) = (1 − si−1(u, v)) · α(si) + si+1(u, v) · α(1 − si).

If we are on the i-th side, si−1 = 1 and si+1 = 0, so di = 0, satisfying (4.2).
Furthermore on the i-th side, di−1 and its derivative are the same as that of si:

di−1 = (1 − si−2) · α(si−1) + si · α(1 − si−1) = si,

∂di−1

∂u
=

∂

∂u
(1 − si−2) · α(si−1) +

∂

∂u
si · α(1 − si−1) =

∂si

∂u
,

because the derivatives of the blend function vanish. The same reasoning works for the derivative by v. Similarly

di+1 = (1 − si) · α(si+1) + si+2 · α(1 − si+1) = 1 − si,

∂di+1

∂u
=

∂

∂u
(1 − si) · α(si+1) +

∂

∂u
si+2 · α(1 − si+1) =

∂

∂u
(1 − si) = −

∂si

∂u
,
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Figure 4.7: Construction of the cubic parameterization.

so the requirements (4.3) and (4.4) are satisfied. A simplified view of this construction is that taking a (u, v) point,
we determine three consecutive sweep lines that go through (u, v), and determine di as the weighted combination of
di = si−1 on Γi−1 and di = si+1 on Γi+1, according to the middle coordinate si.

Figure 4.6 shows constant s and d lines for this parameterization using the central line sweep parameterization as
a basis [44]. The first image is based on the right side of the polygon; the second on the small side at the top-right;
and the third on the top side. Observe that all lines of the second image start the in same way (in a differential sense)
as their counterparts in the first and third images.

4.6.2. Cubic parameterization
While the interconnected parameterization scheme satisfies all the requirements, its d-constant parameter lines

have inflections. In this section we will show a different parameterization where the d-constant parameter lines are
cubic curves. This computation is not direct, as it requires the solution of fourth- or sixth-degree equations. (Cubic
parameter lines are the simplest, but quartics can also be used by extending the method below to spread the d constant
parameter lines more evenly for large n-s, e.g. n ≥ 8.)

Similarly to the previous method, this parameterization also builds on a sweep line parameterization. For simplic-
ity’s sake, we will use the bilinear sweep, but the same can be done for radial or other parameterizations, that lead
to higher degree equations. For ease of computation, we will assume that the base side lies on the u axis, with its
endpoints at the origin and (1, 0). Points A and Z are the distant endpoints of the left and right polygon sides Γi−1 and
Γi+1, respectively. See Figure 4.7.

Let us define the d isocurves in such a way, that they “inherit” the same positions and tangents from the left and
right side as the corresponding bilinear sweeping lines of those sides. We place a point B as shown in the figure at
a λ proportion of the AC side, Y is defined symmetrically on the ZX side. λ is a fullness parameter, that controls
the shape of the d isocurves to be more flat or curved. The ABYZ polygon defines a cubic Bézier curve, drawn in
green. Note that the quadrilateral [A ∼ C ∼ (0, 0) ∼ (1, 0)] produces a sequence of tangents corresponding to the
bilinear parameterization based on the left side of the polygon, and similarly the quadrilateral [Z ∼ X ∼ (1, 0) ∼ (0, 0)]
produces a sequence of tangents corresponding to the bilinear parameterization based on the right side of the polygon.
In other words, the di isolines will start and end in the same way as the sweep lines at sides i − 1 and i + 1.

Thus the left and right sweep lines define a family of Bézier curves, the two inner points of the Bézier control
polygon are on the chords defined by [B ∼ (λ, 0)] and [Y ∼ (1 − λ, 0)], respectively. One of these curves goes through
the (u, v) point at parameter ŝ. Let Q be the point on the top curve defined by the ABYZ control polygon at ŝ. The line
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Figure 4.8: Constant parameter lines of the cubic parameterization, with λ = 1
2 .

through Q and (u, v) intersects the base side at P.
Obviously

v =
u − pu

qu − pu · q
v,

where upper indices denote coordinates, e.g. Q = (qu, qv). This can also be written as

(qu − pu)v + qv(pu − u) = 0.

From the definition of Q, we have

Q = (1 − ŝ)3A + 3(1 − ŝ)2 ŝB + 3(1 − ŝ)ŝ2Y + ŝ3Z,

and similarly, P = (pu, 0), where

pu = (1 − ŝ)3 · 0 + 3(1 − ŝ)2 ŝ · λ + 3(1 − ŝ)ŝ2 · (1 − λ) + ŝ3 · 1.

This leads to a sixth-degree equation in ŝ, that can be solved by various numerical methods, see [34]. (The sweeping
line construction guarantees that there exists a unique line that goes through (u, v), thus we need to compute only the
real root in the [0, 1] interval, and can ignore the other ones.) Now we define d as

d =
v
qv = v/

(
(1 − ŝ)3 · av + 3(1 − ŝ)2 ŝ · bv + 3(1 − ŝ)ŝ2 · yv + ŝ3 · zv

)
.

Note, that using 1
3 for the fullness parameter λ, the parameterization of the base side becomes linear, and the

equation simplifies to fourth degree; however, the isoparameter lines become somewhat flat. A larger λ gives more
fullness, but requires solving the above sixth-degree equation. This construction also satisfies the requirements of
constrained parameterization (see Figure 4.8).

5. Generalized Coons patch

This section deals with the direct generalization of the Coons patch to n sides following the original idea of
summing up linear side interpolants and subtracting corner correction patches (see also Section 3). Having a general
polygonal domain, we define side and corner blending functions, and apply constrained parameterization for the
individual ribbons. Either the interconnected or the cubic method can be used, or anything else that satisfies the
requirements (4.2)–(4.4). Running the indices from 1 to n, the following surface equation is obtained:

S (u, v) =

n∑
i=1

Ri(si, di) · Bi(d1, . . . , dn) −
n∑

i=1

Qi,i−1(si, si−1) · Bi,i−1(d1, . . . , dn).

11



Figure 6.1: Linear and curved ribbons of a seven-sided patch.

Along a given side, similarly to the reformulated Coons patch, five surface interpolants — three linear ribbons
and two corner correction patches — are combined to evaluate a point on the boundary. As these satisfy the rules of
constrained parameterization, the patch will interpolate the related boundary and cross-derivative functions. A short
proof can be found in Appendix A; for more details see [39]. A few examples are shown in Section 7.

Note, that for n = 4 this equation reproduces the Coons patch when the cubic Hermite blending functions are used,
but only a close approximation of the original patch can be obtained when rational distance-based blending functions
are applied.

6. Composite ribbon patches

The patch defined in the previous section is based on linear ribbons. These are very simple and can be computed
efficiently. On the other hand, linear ribbons may strongly deviate from highly curved n-sided surfaces, and their
combination may cause unexpected curvature changes, when the points in the interior are computed by the affine
combination of relatively “distant” positions. This motivated us to introduce a special curved ribbon that actually
interpolates three consecutive linear ribbons. The curved ribbons align much closer to the final n-sided patch, and
their combination, even in extreme cases, yields more predictable interior shapes (see Figure 6.1). Using curved
ribbons leads to a new multi-sided patch formulation, called composite ribbon patches.

6.1. Curved ribbons

A curved ribbon is defined as the combination of three consecutive linear ribbons, and it is actually a Coons patch
with three of its four sides given, defined over a local rectangular domain. Let Ci(si, di) denote the curved ribbon
for the i-th side. We simplify the notation and drop the indices of s and d, as it does not cause any ambiguity. The
definition of Ci is as follows (see Fig. 6.2):

Ci(s, d) = Rl
i(s, d)H(s) + Ri(s, d)H(d) + Rr

i (s, d)H(1 − s) − Ql
i(s, d)H(s)H(d) − Qr

i (s, d)H(1 − s)H(d),

where Rl
i(s, d), Rr

i (s, d), Ql
i(s, d) and Qr

i (s, d) denote ribbons and correction patches on the left and right sides, respec-
tively. We parameterize these by the local coordinates of the i-th side as follows:

Rl
i(s, d) = Ri−1(1 − d, s) = Pi−1(1 − d) + γ(s)Ti−1(1 − d),

Rr
i (s, d) = Ri+1(d, 1 − s) = Pi+1(d) + γ(1 − s)Ti+1(d),

Ql
i(s, d) = Qi,i−1(s, 1 − d) = Pi(0) + γ(s)Ti−1(1) + γ(d)Ti(0) + γ(s)γ(d)Wi,i−1,

Qr
i (s, d) = Qi+1,i(d, s) = Pi+1(0) + γ(d)Ti(1) + γ(1 − s)Ti+1(0) + γ(d)γ(1 − s)Wi+1,i.

and apply an H(t) blend function, such as the Hermite blend function or the rational blend function, that creates a
special C1 Coons patch over a four-sided domain.

12



Figure 6.2: Construction of a curved ribbon.

Due to the above construction, d is constrained to lie in [0, 1]. This holds for the Wachspress and interconnected
parameterizations, but not for the bilinear and cubic parameterizations.

Note that the fourth side of the curved ribbons is “floating”; it comes as a by-product of the three interpolating
linear ribbons. Constraining the fourth side can be an advantage, as it offers further degrees of freedom to adjust the
shape. At the same time, this fourth side, as in the case of simple linear ribbons, has a relatively small influence due
to the blending functions.

Also, using our notation, the classical Gregory patch [5] can be interpreted as a combination of two-sided curved
corner interpolants, that are made up of two linear ribbons minus a single correction term, as follows:

RGregory
i,i−1 (si, si−1) = Ri−1(si−1, si) + Ri(si, 1 − si−1) − Qi,i−1(si, si−1).

In the next sections we will present new schemes that combine curved ribbons.

6.2. The C1 composite ribbon patch

Curved ribbons can be used as side interpolants for simple transfinite interpolation patches using the singular
blending function (Equation 4.1). Unfortunately, the direct generalization of Coons patches, introduced in Section 5,
does not work with curved ribbons. Therefore, we propose an alternative representation that combines curved ribbons
in a different way, and eliminates correction patches; thus yielding a simple formula:

S (u, v) =
1
2

n∑
i=1

Ci(si(u, v), di(u, v))Bi(d1(u, v), . . . , dn(u, v)).

In this case, we use a constrained parameterization as defined earlier in Section 4.6. According to the character-
istics of the Bi blend function, for any point on the i-th boundary all addends of the sum vanish except for Ci−1, Ci

and Ci+1. Since each of these ribbons also interpolates the corresponding three boundaries, the related three points on
these ribbons are the same. Their cumulative blend is

Bi−1 + Bi + Bi+1 = Bi,i−1 + Bi + Bi+1,i = (Bi,i−1 + Bi+1,i) + Bi = 1 + 1 = 2,

hence the division by two in the surface equation. This patch also satisfies the boundary constraints. A short proof
can be found in Appendix B; for more details see [39].
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(a) Side-based patch (SB). (b) Corner-based patch (CB).

(c) Generalized Coons patch (GC). (d) Composite ribbon patch (CR).

Figure 7.1: Comparing four transfinite patches (Example 1).

6.3. The G1 composite ribbon patch
It can be proven that the ribbon interpolation property remains valid, if we ignore the last parameterization re-

quirement (4.4). Then we have the same tangent plane for every boundary point as the respective curved ribbon,
but not the same tangent vector. This enables the use of simple parameterizations, such as the Wachspress method,
which is computationally more efficient. The resulting patch reproduces the boundary constraints in a G1 sense, as
shown in Appendix B. The visual difference between the C1 and G1 patches can be noticed only at extreme boundary
configurations.

To sum it up, in this section we have created new transfinite surface schemes that (i) use curved side interpolants,
(ii) have roughly the same computational complexity as other transfinite methods, and (iii) avoid using singular blend-
ing functions.

7. Examples

In this section we show a few examples to evaluate our results. Where needed, we will refer to two prior schemes.
The Side-based (SB) patch suggested by Kato in [22] applies singular blending functions. The Corner-based (CB)
patch proposed by Gregory in [16] combines corner interpolants. We will use the abbreviations GC and CR for the
Generalized Coons and the Composite Ribbon patches, respectively.

Example 1
Even curvature distribution and predictable patch interior is of great importance. In other words, curvature artifacts

must be avoided. Our experience shows that in this respect CR patches seem to be the best, in particular for difficult
boundary configurations. For simple cases, the curvature distributions are similar. This similarity is strong between
the GC and CB patches, which are “close relatives” in generalizing the Coons patch, in spite of the fact that the GC
patch is a combination of side interpolants, while the CB patch uses corner interpolants.

The images in Figure 7.1 show mean curvature maps for SB, CB, GC and CR patches. Observe the undesirable
narrow curvature variations that occur along some edges of the SB patch; this problem disappears when using GC
or CR patches, yielding more natural transitions between the ribbons. Table 1a shows numerical values of mean
curvature values including its minimum, maximum, average and standard deviation for all four schemes.
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Min Max Average Std. Deviation
SB -48.36 294.82 27.92 1.261
CB -56.15 224.44 22.50 0.728
GC -37.89 192.27 22.48 0.678
CR -23.70 192.26 22.64 0.648

(a) Curvature values in Example 1.

Min Max Average Std. Deviation
SB 0.9963 1.0098 1.0040 3.41e-3
CB 0.9942 1.0082 0.9990 3.13e-3
GC 0.9960 1.0082 1.0014 3.02e-3
CR 0.9960 1.0057 1.0007 2.77e-3

(b) Radii in Example 3.

Table 1: Numeric evaluation.

SB CB GC CR
0.4 0.65 0.45 1.3

Table 2: Average computation times per surface point (in milliseconds).

These values were computed using a dense triangular mesh; if exact values are needed the derivatives are computed
using the formulae in the Appendices, though this is computationally much more demanding.

Example 2
Computational efficiency is determined by three components: (i) evaluating the interpolants, (ii) computing the

blending functions, and (iii) computing the ribbons’ parameterization. Assuming cubic B-spline boundary curves, the
basic interpolants are cubic-by-linear for SB and GC, bicubic for CB, and biquartic for CR. The blend functions are
rational functions of the distances with degree 2(n−1) for SB, and 2(n−2) for the other patches. Finally, the mapping
between the domain and the ribbons can be characterized by a bilinear polynomial for SB and CB, a quintic for GC,
and a trigonometric parameterization for CR.

Our experience shows that 97% of the evaluation time is used for ribbons, and only 3% is devoted to parame-
terization and blending functions. Table 2 shows the computation times for a single point on a 2.5 GHz processor.
As expected, the SB patch is the fastest, and the CR patch is the slowest. The ratios of computing different parame-
terizations are the following: interconnected→1, cubic→1.78, Wachspress→1.28. (Computations can be made more
efficient with extensive caching.)

Example 3
Another interesting question is how these rational transfinite patches can approximate regular shapes, such as an

octant of a sphere. We have used approximate B-spline boundaries for the circular arcs with a constraint that the

(a) Slicing map. (b) Gauss curvature map. (c) Isophote lines.

Figure 7.2: Sphere reproduction by a CR patch (Example 3).
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(a) Shaded visualization. (b) Slicing map.

(c) Isophote lines. (d) Mean curvature map.

Figure 7.3: Stability — inserting a new edge (Example 4).

middle point of the patch lies exactly on the ideal sphere. In this test CR patches proved to be the best; in Figure 7.2
planar contours, a sensitively scaled Gaussian curvature map and isophotes illustrate the quality of the approximation.
See Table 1b for numerical comparison of the radius values for all four schemes.

Example 4
Stability is a qualitative characteristic, that is hard to define for multi-sided schemes. Assuming that we are editing

one of the boundaries, we would expect that the shape surrounded by the other sides is generally unaffected. Similarly,
if we insert a new edge, i.e., we create an (n + 1)-sided patch from an n-sided, we expect that the parts of the patch
that are not directly adjacent will remain unchanged. Our experiment shows that in this respect CR patches are good,
CB and GC patches are reasonable, and SB patches are somewhat weaker.

Figure 7.3 shows a somewhat artificial model that interpolates a general topology curve network. It contains
one 2-sided, two 3-sided, two 4-sided, one 5-sided and one 6-sided patch, all smoothly connected. For the 4-sided
loops ordinary Coons patches were used, for the 2-sided a special formula shown in [44] was used, and the rest was
represented by CR patches. The cross-derivative functions were extracted from the curve network, and the ribbons
satisfy tangent plane constraints at the vertices. See the shaded visualization (a) and the contours (b). This is an almost
symmetric surface configuration, except that a corner was cut off at the right side, which converted the five-sided patch
at the left into a six-sided patch. The isophote lines (c) and mean curvature map (d) figures show that the patch has
changed only to a minimal extent in the middle. It can also be observed that these patches provide visual G2 continuity
in non-extreme configurations, see the smooth variation of the isophote lines across the boundaries.

It is a particular advantage of transfinite schemes that it ensures a very concise representation for complex shapes.
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(a) The whole model.

(b) With hidden boundaries. (c) Default ribbons. (d) Slices.

Figure 7.4: Woman’s head (Example 5).

For example, the above model can be fully defined by 5 KB, while using quadrilateral B-splines would require more
than 100 KB.

Example 5
Finally, a more complex example is shown in Figure 7.4. The three close-up views show the face (a) without

boundaries, (b) with the default ribbons and also with a (c) slicing map to show G1 continuity. This collection of faces
consists of six 5-sided, and two 4-sided patches.

Conclusion

Two new surface representations for transfinite surface interpolation have been investigated. Both schemes are
based on ribbon surfaces, composed of boundary curves and cross-derivative functions, ensuring normal plane conti-
nuity between adjacent patches. The first scheme can be considered a true generalization of the Coons patch, following
the classical Boolean sum logic. The second is a transfinite surface combining doubly curved side interpolants. Rib-
bons have been reparameterized to reproduce the Coons patch for n = 4. Various mappings of the ribbons onto
the n-sided polygonal domain were suggested, defining simple and constrained parameterizations that are necessary
for ensuring the interpolation property. These schemes inherit the continuity of the boundaries, e.g. having cubic
B-splines will produce a C2 continuous patch in the interior. Future research work is going to be directed towards
fairing, data approximation by ribbon-based patches, and using ribbons over non-convex parametric domains.
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Appendix A. Generalized Coons Patch

Here we prove the interpolating properties of the GC patch using the notations of Section 4. Take a (u, v) point on
Γi, i.e., let di = 0. For such a point, most of the blend functions vanish, leaving only

S (u, v) =
(
Ri−1 − Qi,i−1

)
Bi,i−1 + Ri +

(
Ri+1 − Qi+1,i

)
Bi+1,i.

(We have dropped the arguments to simplify the notation.) It is easy to see that Ri−1 = Qi,i−1 and Ri+1 = Qi+1,i, which
proves positional interpolation.

As for the tangential part, let us compute the partial derivative by u:

∂

∂u
S (u, v) =

n∑
j=1

[(
∂

∂s j
R j
∂s j

∂u
+

∂

∂d j
R j
∂d j

∂u

)
B j + R j

∂

∂u
B j

]

−

n∑
j=1

[(
∂

∂s j
Q j, j−1

∂s j

∂u
+

∂

∂s j−1
Q j, j−1

∂s j−1

∂u

)
B j, j−1 + Q j, j−1

∂

∂u
B j, j−1

]
.

Using the properties of the blend functions and the parameterization, we can simplify this expression, as well:

∂

∂u
S (u, v) =

(
∂

∂si−1
Ri−1 −

∂

∂si−1
Qi,i−1

)
∂si−1

∂u
Bi,i−1 +

(
∂

∂di−1
Ri−1 −

∂

∂si
Qi,i−1

)
∂di−1

∂u
Bi,i−1

+
(
Ri−1 − Qi,i−1

) ∂

∂u
Bi,i−1 +

∂

∂si
Ri
∂si

∂u
+

∂

∂di
Ri
∂di

∂u
+

(
Ri+1 − Qi+1,i

) ∂

∂u
Bi+1,i

+

(
∂

∂si+1
Ri+1 −

∂

∂si+1
Qi+1,i

)
∂si+1

∂u
Bi+1,i +

(
∂

∂di+1
Ri+1 +

∂

∂si
Qi+1,i

)
∂di+1

∂u
Bi+1,i.

In the above equation, all pairs of the R- and Q-derivatives cancel out each other, leaving

∂

∂u
S (u, v) =

∂

∂si
Ri
∂si

∂u
+

∂

∂di
Ri
∂di

∂u
=

∂

∂si
Pi
∂si

∂u
+ Ti

∂di

∂u
,

which is what we wanted to show. The same reasoning works for the v-derivative.

Appendix B. Composite Ribbon Patch

Here we prove the interpolating properties of the CR patch. The positional constraints are trivially satisfied, as
explained briefly in Section 6. The tangential proof is similar to the one in Appendix A. The derivative at a (u, v) point
on Γi is (dropping the arguments for ease of notation):

∂

∂u
S (u, v) =

1
2

n∑
j=1

[(
∂

∂s j
C j
∂s j

∂u
+

∂

∂d j
C j
∂d j

∂u

)
B j + C j

∂

∂u
B j

]
,
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which can be expanded into

∂

∂u
S (u, v) =

1
2

[(
∂

∂si−1
Ci−1

∂si−1

∂u
+

∂

∂di−1
Ci−1

∂di−1

∂u

)
Bi−1 + Ci−1

∂

∂u
Bi−1+(

∂

∂si
Ci
∂si

∂u
+

∂

∂di
Ci
∂di

∂u

)
Bi +(

∂

∂si+1
Ci+1

∂si+1

∂u
+

∂

∂di+1
Ci+1

∂di+1

∂u

)
Bi+1 + Ci+1

∂

∂u
Bi+1

]
.

On Γi, where di = 0, we have Ci−1 = Ci+1, so the terms

Ci−1
∂

∂u
Bi−1 + Ci+1

∂

∂u
Bi+1 =

1
2

(Ci−1 + Ci+1)
∂

∂u
(Bi−1 + Bi+1) =

1
2

(Ci−1 + Ci+1)
∂

∂u
Bi = 0

vanish. Straightforward calculation leads to

∂

∂u
S (u, v) =

1
2

[(
∂

∂si
Pi
∂si

∂u
+ Ti

∂si−1

∂u

)
Bi−1 +

(
∂

∂si
Pi
∂si

∂u
+ Ti

∂di

∂u

)
Bi +

(
∂

∂si
Pi
∂si

∂u
+ Ti

∂si+1

∂u

)
Bi+1

]
,

i.e., the derivative vector will be a combination of the si- and di-derivatives of Ri, so it will be in the tangent plane of
Ri (G1 continuity). This holds for simple parameterizations, as well.

If we have a constrained parameterization, the expression can be simplified further:

∂

∂u
S (u, v) =

(
∂

∂si
Pi
∂si

∂u
+ Ti

∂di

∂u

)
Bi−1 + Bi + Bi+1

2
=

∂

∂si
Pi
∂si

∂u
+ Ti

∂di

∂u
,

satisfying C1 continuity. The same reasoning works for the v-derivative.
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