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Abstract
The basic idea of curve network-based design is to construct smoothly connected surface patches, that interpolate
boundaries and cross-derivatives extracted from the curve network. While the majority of applications demands
only tangent plane (G1) continuity between the adjacent patches, curvature continuous connections (G2) may also
be required. Examples include special curve network configurations with supplemented internal edges, “master-
slave” curvature constraints, and general topology surface approximations over meshes.
The first step is to assign optimal surface curvatures to the nodes of the curve network; we discuss different
optimization procedures for various types of nodes. Then interpolant surfaces called parabolic ribbons are created
along the patch boundaries, which carry first and second derivative constraints. Our construction guarantees that
the neighboring ribbons, and thus the respective transfinite patches, will be G2 continuous. We extend Gregory’s
multi-sided surface scheme in order to handle parabolic ribbons, involving the blending functions, and a new
sweepline parameterization. A few simple examples conclude the paper.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—curvenet-based design, transfinite surfaces, Gregory patches, G2 continuity

1. Introduction

In curve network-based design, surface models are directly
defined by a collection of free-form curves, arranged into
a single 3D network with general topology. Curves may
come from (i) sketch input, (ii) feature curves extracted from
orthogonal views, (iii) curves traced on triangular meshes
or (iv) direct 3D editing. Once the curves are defined, all the
surfaces are generated automatically. This calls for a repre-
sentation based on geometric information extracted solely
from the boundaries. Transfinite surface interpolation is a
natural choice, as it does not require a grid of control points
to define the interior shape, and all n boundaries are han-
dled uniformly, unlike in the case of trimmed quadrilateral
surfaces. The ability to interactively edit prescribed bound-
aries and cross-derivatives is also an advantage in contrast to
recursive subdivision schemes.

The first step of surface generation is to compute cross-
directional data, such as tangent planes and curvatures that
are shared by adjacent patches. Then interpolant surfaces,
called ribbons, are generated, that carry first or second-

degree cross-derivative constraints to be eventually interpo-
lated by the transfinite surfaces.

The majority of multi-sided transfinite surfaces are de-
fined over convex domains, combining only linear ribbon
surfaces and enabling G1 continuity between the adjacent
patches. At the same time, there are several practical design
situations, where this approach is not sufficient, and higher
degree continuity is required.

(i) It often occurs that additional curves need to be in-
serted into the curve network to make it suitable for apply-
ing patches with convex domains. The supplemented curves
must be compatible with the already defined ribbons, and
it is particularly important to produce seamless transitions
along these curves. Examples include handling curve con-
figurations with concave angles, or connecting disjoint loops
with prescribed slopes (see Figure 9 later in Section 5).

(ii) Another important situation is when a designer wants
to create a G2 connection based on two existing G1 patches.
He may want to retain one surface (the master), and modify
the adjacent patch (the slave) accordingly, see Figure 8, or
may prefer an averaged target curvature, see Figure 7.
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Figure 1: Node configurations by # of independent curves.

(iii) A third example is when we have a general topology
curve network defined over a mesh and would like to obtain
a good approximation of the interior data points (see Fig-
ure 10). Clearly, if we extract not only the normal vectors,
but also curvature information from the underlying mesh,
approximation will be more accurate.

In this paper our interest is to generate smooth, cur-
vature continuous transfinite surface patches over a curve
network using parabolic ribbons. This is a complex topic,
and most papers in the literature only deal with one of
its specific facets. Twist compatibility of bi-parametric sur-
face patches around vertices was studied, amongst others,
in [Sel81, Pet91], the construction and the properties of
curve networks were investigated in [VH96, Her96]. The
necessary conditions to embed a curve network into a G2

surface were recently analyzed in [HPS12]. Methods to cre-
ate fair curve networks were suggested in [MS94]. Curva-
ture continuous extensions of the Gregory patch were pro-
posed in [GH89, HM99]. Recent developments in transfinite
surface interpolation also include two new multi-sided patch
representations proposed in [SVR14].

In this paper, we try to give a comprehensive view of the
subject, examining general topology curve networks, surface
curvatures at vertices, twist compatibility, ribbon generation,
and transfinite surface representations, as well as some prac-
tical applications.

The rest of the paper is organized as follows. In Section 2
we discuss how to assign optimal surface curvatures to the
vertices of the network, that make G2 interpolation possible.
Then, in Section 3, methods to compute linear and parabolic
interpolants are discussed. In Section 4, we introduce an ex-
tended scheme of Gregory patches, using a new sweepline
parameterization, that merges parabolic ribbons and thus en-
ables curvature continuous connections. A few examples il-
lustrate our surface scheme in Section 5.

2. Surface Curvatures for G2 networks

Prior to generating our surface model, we need to ensure that
the defining network is G2. We need to assign optimal sur-
face curvatures to the vertices, and in special cases slightly
adjust some curves to meet the G2 conditions.

In this section we will focus on how to determine opti-

mal surface curvatures in different cases. Assume we have
n (at least C2 continuous) curves meeting at a vertex; some
of them terminates there, others pass through it. Here n de-
notes the number of “independent” curves, which is not nec-
essarily equal to the valence of the vertex. For example, the
valence of an X-node is four, but it represents only two in-
dependent curves (Figure 1).

We assume that the curves share a common tangent plane.
This has a local coordinate system; the tangent of the ith
curve spans an angle ωi with the local x-axis. Each curve
is also characterized by its normal curvature, denoted by ki.
We want to determine an optimal surface curvature, that is
defined by two unknown principal curvatures κ1 and κ2, and
an unknown orientation of the first principal direction, de-
fined by the angle λ = ∠(e1,x) to the x axis. Assume that
these quantities are known, then the normal curvature at an-
gle ω is defined by Euler’s equation

κ(ω) = κ1 cos2(ω−λ)+κ2 sin2(ω−λ). (1)

Our goal is to compute an optimal triplet of (κ1,κ2,λ), that
minimizes the given normal curvature deviations in least
squares sense, i.e.,

n

∑
i=1

(κ(ωi)− ki)
2 = min . (2)

We will follow the approach suggested in [VH96], where
the above non-linear system of equations is transformed
into a linear system using another triplet of unknowns
(W1,W2,W12), where

W1 = κ1 cos2
λ+κ2 sin2

λ, (3)

W2 = κ1 sin2
λ+κ2 cos2

λ, (4)

W12 = (κ1−κ2)sinλcosλ. (5)

Using these quantities the curvature constraints are

κ(ωi) =W1 cos2
ωi +W2 sin2

ωi +W122sinωi cosωi. (6)

After computing (W1,W2,W12), the optimal surface curva-
ture (κ1,κ2,λ) can be easily determined. We will further an-
alyze the above general approach for various n values. In this
paper we have extended the basic algorithm of [VH96] to
meet the requirements of G2 curvenet-based design, notably
cases (i) and (iv).

(i) Underdetermined case. Corner nodes, T-nodes and X-
nodes are very frequently encountered in free-form curve
networks (Figure 1, n = 2). In this case, we have two con-
straints and three unknowns, thus the system is underdeter-
mined and an additional constraint is needed. We propose
minimizing the squared sum of the principal curvature radii,
which attempts to avoid flat surface areas and equalize the
two values. The optimization

κ(ωi) = ki, i ∈ {1,2} (7)
1
κ2

1
+

1
κ2

2
= min . (8)

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



P. Salvi, T. Várady / G2 Surface Interpolation Over General Topology Curve Networks

Figure 2: Normal fence and mean curvature map.

leads to a third-degree equation — details can be found in
Appendix A. There are two exceptions: at umbilical points
k1 = k2, so we set κ1 and κ2 accordingly, and choose λ ar-
bitrarily. When one of the curvatures, say k2, is zero (e.g. at
the side of a cylinder), the larger principal curvature κ1 is
uniquely determined, substituting ω1 into Euler’s equation.

(ii) Solving the system. Typical edge configurations for
n = 3 — Y-node, T-node with two legs, etc. — are de-
picted in Figure 1. We have three constraints and three un-
knowns, so we can solve the system, and the surface cur-
vature matches the three prescribed normal curvatures. The
special situations of (i) need to be treated here, as well. (An
alternative method was proposed in [VH96] to avoid hyper-
bolic surface curvatures, when possible.)

(iii) Minimizing the system. For n > 3, we perform the
above least-squares minimization, but the result surface cur-
vature only approximates the prescribed normal curvatures.
As we wish to have an exact match, the curves involved may
need to be modified. Details of this algorithm are discussed
in [VH96], as well. Our practical experience shows that the
majority of vertex nodes will fall into cases (i) or (ii), and
curve tweaking occurs only in a few cases. Even then, the
changes are relatively small, hardly noticeable visually.

(iv) Constrained minimization. There is a special case of
n > 3, when we wish to optimize surface curvature, while
one particular curvature constraint κ(ω0) = k0 must be re-
tained. We minimize the expression ∑(κ(ωi)− ki)

2 using
the Lagrange multiplicator method. Details can be found in
Appendix A. We will apply this calculation for averaging
surface curvatures in the next section.

3. Computing Ribbons

As discussed earlier, cross-derivatives need to be extracted
solely from the curve network. Once two ribbons on the op-
posite sides of a common boundary are set G1 or G2 contin-
uous, the corresponding transfinite surfaces will inherit this
property. Two ribbons are G1 (tangent plane) continuous, if
their first cross-derivatives are perpendicular to a common
sweep of normal vectors (called normal fence) along the

Figure 3: Normal curvature arcs and Gauss curvature map.

common boundary. Figure 2 shows an example, where the
fence is rendered as a series of yellow lines.

When we require G2 (curvature) continuity between two
surfaces, we apply the Linkage Curve Theorem [PW92]:

Two surfaces tangent along a C1-smooth linkage
curve are curvature continuous, if and only if at
every point of the linkage curve, their normal cur-
vature agrees for an arbitrary direction other than
the tangent of the linkage curve.

This means that if we have a particular directional sweep
along the common boundary, and the normal curvatures of
the two ribbons in this direction are always the same, then
G2 continuity is satisfied. Figure 3 shows an example with
common normal curvatures rendered as circular arcs. (The
matching colors of the Gauss map show G2 continuity.)

In the rest of this section, we will investigate how to de-
termine normals and curvatures from a curve network.

3.1. Preliminaries

A ribbon is a bi-parametric surface R(s,d); s is the side pa-
rameter, and d is the distance parameter. The side parameter
runs in the interval [0,1] along the boundary curve. The dis-
tance parameter is defined in the cross direction; it is zero on
the boundary and increases as we move away from it.

For a given n-sided patch, there is a loop of curves, Pi(si),
and we need to create the corresponding ribbons Ri(si,di),
i ∈ [1 . . .n]. The parameters (si,di) can also be regarded as
functions that map values from a common polygonal domain
(see Section 4.3). Note also that the indexing is circular with
1 coming after n and vice versa, and we have Pi−1(1)=Pi(0)
for all i.

Given a boundary curve Pi(si) and the corresponding
cross-derivative Ti(si), a linear ribbon can be written as

Ri(si,di) = Pi(si)+diTi(si). (9)

The equation of a parabolic ribbons is given as

Ri(si,di) = Pi(si)+diTi(si)+
1
2

d2
i Ci(si), (10)

where Ci(si) denotes the second cross-derivative.

c© 2014 The Author(s)
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3.2. Normal Fence, Linear Ribbons and Compatibility

At vertices of the network, all curve tangents are in a com-
mon plane. For each boundary Pi(si), we create a normal
fence Ni(si) that interpolates the normals at the related cor-
ners, and minimizes its rotation along the boundary; this
is the well-known rotation-minimizing frame or RMF. An
exact (closed form) solution of the underlying differential
equation cannot be determined, but approximations can be
computed via a sequence of discrete points [WJZL08].

The cross-derivatives of the ribbons can be defined as

Ti(si) :=
∂

∂di
Ri(si,0) (11)

= α(si)Di(si)+β(si)
∂

∂si
Ri(si,0),

where α(si) and β(si) are scalar functions, and Di(si) rep-
resents a direction vector function, that is perpendicular to
Ni(si) everywhere. One trivial choice for Di is

Di(si) = Ni(si)×
∂

∂si
Ri(si,0), (12)

but other definitions are also possible. Di(si) represents a
common vector function assigned to the boundary, so G1

continuity is obviously satisfied.

The scalar functions must satisfy end conditions at the
corner points (si = 0 and si = 1). There are further degrees
of freedom to define these in order to optimize the shape
of the patch. For example, cross-derivatives at the middle of
the boundary (si = 0.5) can be prescribed for manual shape
editing. Alternatively, these can be optimized by fairing al-
gorithms, which is subject of ongoing research.

The next issue is how to define ribbons that are compati-
ble with the prescribed surface curvatures of the network. It
is well-known from differential geometry [Pet91] that once
the ingoing curves match a common surface curvature, there
always exists a set of compatible twist vectors (mixed partial
derivatives) at this corner. The “height” of the twist vectors
is unambiguously defined by the first and second derivatives
of the curves and the Gaussian curvature (K), thus the twist
vector of a compatible ribbon R must satisfy the following
condition at the corner:

∂
2

∂s∂d
R·N =

(
∂

2

∂s2 R ·N

)(
∂

2

∂d2 R ·N

)
−K

∥∥∥∥ ∂

∂s
R× ∂

∂d
R
∥∥∥∥2

.

(13)
This also indirectly determines D′ ·N, since the normal com-
ponent of the twist vectors must also satisfy

∂
2

∂s∂d
R ·N = αD′ ·N +βP′′ ·N. (14)

An essential consequence of the above equation is that for a
curvature compatible normal fence N′ ·N is also constrained,
and instead of the RMF, we have to compute a more gen-
eral normal fence, that approximates a smoothly varying se-

Surface 1 Surface 2 Average

Figure 4: Curvature averaging, visualized in the tangent
plane. The red line shows the constrained direction.

quence of normal vectors and satisfies the derivative con-
straints at the two ends, as well, e.g. by constrained fitting.

3.3. Normal Curvatures Along the Edges

We constrain the opposite curvatures to be identical, which
ensures curvature continuity by the Linkage Curve Theo-
rem. It would be nice to naturally blend surface curvatures
of (κ1,κ2,λ) from one endpoint to the other, which would
define a “rotation minimizing curvature” function, but this
seems to be a difficult problem and no such algorithm is
known to the authors. Instead we discuss two important prac-
tical cases.

(i) The simplest method is to enforce a master-slave re-
lationship, when we preserve the curvature function of the
master patch, and enforce this to the slave to achieve a G2

connection.

(ii) It is more challenging to ensure G2 continuity by aver-
aging. Assuming we have already generated two G1 patches,
we wish to compute a surface curvature at every point, such
that it (i) interpolates the normal curvature of the common
boundary, and (ii) approximates the surface curvatures of the
two adjacent patches. This problem can be solved using the
constrained surface curvature method of the previous sec-
tion. At a given point, let ω0 be the tangent direction of the
boundary curve and k0 its curvature. We take several curva-
ture “measurements” in further ωi directions from both sur-
faces, denoted by kA

i and kB
i , and define a target curvature as

the mean of these two values, i.e., ki = (kA
i +kB

i )/2. Then we
minimize ∑(κ(ωi)− ki)

2 using the constraint κ(ω0) = k0.
This method is visually demonstrated in Figure 4, where nor-
mal curvatures are drawn using the Euler equation.

3.4. Parabolic Arcs and Parabolic Ribbons

After the surface curvature along the boundary is deter-
mined, we need to compute appropriate parabolic arcs in the
local sweeping planes defined by Ti(si) and Ni(si). The nor-
mal curvature κ(si) in the direction of Ti(si) is calculated
using Euler’s formula. We still have some freedom in deter-
mining the exact arcs, as only the tangent direction and the
curvature is constrained.

c© 2014 The Author(s)
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For ease of computation, let us transform the parabolic arc
of Ri at a fixed ŝi into a local coordinate system, where the
first point is the origin, and the tangent of the arc is the local
x-axis. Then at a given boundary point, the equation of the
parabola can be written as a quadratic Bézier curve of three
control points:

Ri(ŝi,di) = B2
0(di) · (0,0)+B2

1(di) · (l(ŝi)/2,0)

+B2
2(di) · (l(ŝi),h(ŝi)) . (15)

Assuming that the width of the parabolic ribbon l(ŝi) is the
same as the corresponding linear one, h(ŝi) can be expressed
by means of the prescribed curvature as h(ŝi) =

1
2 κ(ŝi)l2(ŝi),

which defines the second and third control points of the
parabolic arc. As a result, parabolic ribbons can either be
directly evaluated by the above formula or represented as an
approximating B-spline surface.

4. G2 Gregory Surfaces

At this point we assume that the ribbons have already been
determined. Various transfinite surface schemes exist to in-
terpolate ribbons, see the review in [VRS11]. In this paper
we elaborate an extended version of the classical Gregory
patch. Its equation is

S(u,v) =
n

∑
i=1

Ii,i−1(si(u,v),si−1(u,v))Bi,i−1(u,v), (16)

where Ii,i−1 is a corner interpolant between boundary curves
i and i− 1, and Bi,i−1 denotes a blending function of the
related corner. The parameter function si(u,v) is associated
with the ith side of the polygonal domain; we omit its argu-
ments for brevity. Let us analyze these constituents below.

4.1. Corner Interpolants

Corner interpolants are formulated by two adjacent side-
based (linear or parabolic) ribbons. It is well-known from
the classical theory of Boolean-sum surfaces, that in order
to cancel out unwanted terms coming from two side inter-
polants, a correction patch Qi,i−1 needs to be subtracted (see
also Section 4.4):

Ii,i−1(si,si−1) = Ri−1(si−1,si)+Ri(si,1− si−1)

−Qi,i−1(si,si−1). (17)

If we also consider Ii+1,i(si+1,si), it is apparent that Ri
occurs with two different parameterizations in the surface
equation, which we will denote by R−i (si,di = 1−si−1), and
R+

i (si,di = si+1).

4.2. Blending Functions

Transfinite surface schemes generally combine individual
interpolants by special blending functions, that ensure re-
quired interpolation properties. For Gregory patches, corner
blends are used, that yield 1 at a given corner, then gradually

Figure 5: Blend functions with m= 2 (left) and m= 3 (right).

vanish on the adjacent sides, and become zero as we reach
the remaining sides of the polygonal domain.

For each (u,v) point in the domain, we determine an n-
tuple of distance values ∆i(u,v). The distance ∆i is zero on
the ith side and increases monotonously as we move towards
the center of the domain. These values may represent any
distance measure with the above properties; for example, we
may use distances on sweeping lines, or perpendicular dis-
tances dropped to the respective sides of the polygon.

Let Di1...ik = ∏ j /∈{i1...ik}∆
m
j , then the corner blend is de-

fined as

Bi,i−1(u,v) =
Di,i−1

∑ j D j, j−1

(
=

1/(∆i∆i−1)
m

∑ j 1/(∆ j∆ j−1)m

)
. (18)

This function satisfies our requirements — it yields 1 at
the (i− 1, i) corner, ensures a “gradual” 1 → 0 transition
along sides i− 1 and i as we move away from the corner,
and then vanishes on the remaining sides. Note, that the ex-
pression in the brackets shows an efficient way to compute
blends in the interior of the domain, however, the main for-
mula must be used in the vicinity of polygon sides, where
some ∆i ≤ ε, to avoid singularities.

The exponent m controls the variation of the ribbons;
compare the two images in Figure 5. This ensures that the
resulting surface retains the (m−1)-th derivatives of the rib-
bons. We use m = 2 for linear ribbon patches, and m = 3
for parabolic ones, to achieve G1 and G2 continuity, respec-
tively.

4.3. Parameterization

The goal of parameterization is to determine local parame-
ters for the corner interpolants from a given (u,v) point. In
this paper — for simplicity’s sake — we use regular polyg-
onal domains. Previous research [VRS11] has shown that
for extreme boundary configurations, i.e., very uneven side
lengths or sudden curvature changes, the use of irregular
polygons can improve surface quality.

Let us determine the parameter si for the ith side. Tradi-
tionally, Gregory patches are parameterized by radial sweep-
ing lines [CG84] (Figure 6a), connecting the domain point

c© 2014 The Author(s)
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(a) Radial

(0,0) (1,0)(s,0)

(u,v)a b

(b) Sweep construction (c) Constrained sweep

Figure 6: Parameterizations.

in question to the intersection of the extended polygon sides
i− 1 and i+ 1. This is suitable for G1 continuous surfaces,
but further differential properties are required for G2 con-
tinuity. As discussed earlier, ribbon Ri has two parameteri-
zations. It is necessary that these be identical at every point
along the boundary, so the parametric speed of si−1 and si+1
should be the same:

− ∂si−1
∂w

=
∂si+1
∂w

(
=

∂di

∂w

)
, (19)

where ∂

∂w denotes differentiation along an arbitrary paramet-
ric direction in (u,v), i.e., w is equal either to u or v, or any
combination of them. While ribbons R−i and R+

i have differ-
ent parameters in the interior of the domain, we refer to these
parameterizations uniformly by di, when the above condition
applies on side i.

This condition can be satisfied, if we create sweeping
lines by a special construction using Hermite polynomials.
Without loss of generality, let the base edge be a segment
from (0,0) to (1,0), a and b edge vectors associated with
sides i− 1 and i+ 1, respectively, and (u,v) the point to be
mapped, see Figure 6b. Then we can construct the equation

(u,v) = (s,0)+d [a ·H(s)+b ·H(1− s)] , (20)

where H(s) = 2s3−3s2+1 is the third-degree Hermite poly-
nomial†, and s and d are unknown. This leads to a fourth-
degree equation in s, but that does not pose any difficulty
for real-time computation, as efficient algorithms exist for
solving higher degree polynomial equations [PTVF92], and
values for a given resolution can also be cached. The re-
sult is depicted in Figure 6c. Here Ii,i−1 is parametrized by
the green and blue sweeplines, Ii+1,i by the red and green;
at the bottom the blue sweeplines of side i− 1 and the red
sweeplines of side i+1 are identical in a differential sense.

† Using fifth-degree Hermite polynomials instead also ensures

− ∂
2si−1
∂w2 =

∂
2si+1
∂w2

(
= ∂

2di
∂w2

)
, resulting in C2 interpolation.

4.4. Correction Terms

Now we return to corner interpolants and investigate the
partial derivatives of two — linear or parabolic — ribbons,
meeting at a common corner point. We need a single inter-
polant surface, but the partial derivatives are not necessarily
identical, which poses the well-known problem of twist in-
compatibility. Let us introduce the notation ti = 1−si−1. We
would need

∂
p+q

∂sp
i ∂tq

i
Ri(0,0) =

∂
p+q

∂tq
i ∂sp

i
Ri−1(1,0)

=: Wp,q p,q ∈ {0,1,2}. (21)

The curve network satisfies this equation for p = q = 0, as
the boundaries meet at a fixed corner point. It is also natural
to require that the equation holds for p = 0, q = 1 and p = 1,
q = 0, constraining the first cross-derivatives of the ribbons
to the tangents of the neighboring curves. When some par-
tial derivatives of the ribbons are not compatible, we need
to apply Gregory’s rational twists. These replace the con-
stant vectors Wp,q by rational expressions combining the two
parametric variables (see below). The correction patch for
G2 corner interpolants is defined as

Qi,i−1(si, ti) = Pi(0)+ siW1,0 + tiW0,1 + sitiW1,1

+
1
2

s2
i W2,0 +

1
2

t2
i W0,2 +

1
2

s2
i tiW2,1

+
1
2

sit
2
i W1,2 +

1
4

s2
i t2

i W2,2, (22)

where each W is a rational function of si and ti. Their com-
putation is fairly straightforward, generalizing the classical
Gregory twists [Wor84]. As an illustration, we show one
such term, the remaining ones are similar:

W1,2(si, ti) =
s2

i
∂

2

∂t2
i

Ti−1(1)+ ti ∂

∂si
Ci(0)

s2
i + ti

. (23)

Substituting 0 for either si or ti eliminates one of the con-
flicting partial derivatives where needed.
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(a) Dolphin model (curve network courtesy of C. Grimm). (b) Isophotes — G1 (top) and G2 (bottom).

Figure 7: Continuity between Gregory patches of a complex model.

For G1 curve networks, the twist vectors are often not set
compatible, and Gregory terms must be used. In our G2 case,
the curves match a common surface curvature at each node,
so the compatibility constraints of W2,0, W0,2 for the curves
and W1,1 for the twists are satisfied. However, rational cor-
rections need to be applied for the remaining terms of W2,1,
W1,2 and W2,2.

5. Examples

Surface models in this paper were generated by a prototype
system written in C++. Table 1 demonstrates computation
times for G1 vs. G2 representations, evaluating a test object
shown in Fig. 7a. It consists of two 2-sided, four 3-sided,
five 4-sided, two 5-sided and two 6-sided patches; and the
network contains 10 B-spline curves. While normal fence
generation is really fast, parabolic ribbons require signifi-
cantly more computation, as these are based on sampling
and curvature estimations using the initial G1 patches. Once
parabolic ribbons are ready, the actual evaluation of surface
points increases only to a minor extent (by a factor of 1.5).

The close-up view in Figure 7b shows an X-node with
linear vs. parabolic ribbons; the target curvatures were com-
puted by the averaging method in Section 3.3. It can be seen,
that with parabolic ribbons the isophotes change smoothly
across the shared boundaries, showing G2 continuity.

In the rest of this section, we present some applications of
parabolic ribbons.

5.1. Master-Slave Constructions

In computer-aided design, surfaces are typically defined by
a well-defined hierarchy; for example, fillets smoothly join

Ribbon computation Surface model evaluation
G1 0.02s 2.6s
G2 5.1s 4.0s

Table 1: Average running times on a 2.8GHz CPU.
The surface model was evaluated at 4000 sample points.

large primary surfaces, vertex blends connect several fil-
lets, and so on. In the context of transfinite surfaces, this
means that curvature information needs to be propagated
along some boundary curves. We wish to retain the curvature
of master surfaces, and enforce curvature constraints to ad-

Figure 8: Vertex blend with three master surfaces.
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(a) Concave angle. (b) Unevenly spaced loop of boundary edges. (c) Internal loop.

Figure 9: Improved surfacing using connection curves.

jacent slave surfaces. This can be accomplished by extract-
ing cross curvatures from the master, and generating slaves
using G2 transfinite patches. Such an example is shown in
Figure 8, where a setback vertex blend was created, satis-
fying curvature continuity joining three fillets, i.e., we have
three master surfaces, and one slave in the middle.

5.2. Difficult Curve Network Configurations

While most of the time G1 transfinite surface interpolation is
sufficient to produce a collection of smooth convex patches,
there are certain cases, where we need to insert artificial con-
nection curves into the network in order to handle complex
configurations or avoid shape artifacts, e.g.:

• curve loops with a concave angle,
• unevenly spaced loop of boundary edges,
• connecting disjoint loops (holes).

Examples are shown in Figure 9. In these cases, first we in-
sert connection curves, and create G1 patches. After taking
the average of the curvatures, we compute parabolic ribbons
and regenerate the patches, now with curvature continuity.
As a result, seamlines within these composite patches can-
not be noticed visually. In practical design applications it is
assumed that the composite patches are automatically gen-
erated, and connection curves remain hidden from the users.

5.3. Mesh Approximation

Creating a highly compressed representation for a mesh is an
important task, that can be accomplished by general topol-

ogy surfaces. First, a network of curves is drawn on the
mesh, which also defines a multi-sided patch structure. By
deducing boundary curves and cross-derivatives from the
mesh, transfinite surfaces are created that nicely approxi-
mate the data points of the entire model. Using locally esti-
mated normal vectors, we can create normal fences and lin-
ear ribbons for G1 patches. Estimating local curvatures along
the boundaries, as well, makes it possible to create parabolic
ribbons and G2 patches, which will produce smoother and
more accurate surface models (see Figure 10).

6. Conclusion and Future Work

We have discussed an approach for G2 transfinite surface
interpolation, by (i) assigning curvatures to the nodes and
edges of a general topology curve network, (ii) creating
parabolic ribbons, and (iii) interpolating these with a G2 ex-
tension of Gregory patches, based on corner interpolants and
a special sweepline parameterization. Continuity issues and
the computation of linear and parabolic ribbons were ex-
plained in details. A few applications where G2 ribbons are
needed have also been presented.

It should be noted that G2 surface patches are more sensi-
tive to the quality of the defining network than their G1 coun-
terparts; so applying fairing methods for curves and ribbons
remains a challenging subject for future research. Another
area of interest is to determine optimal transfinite patches
for approximating triangular meshes. We also plan to apply
GPU-s to speed up computations.
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Figure 10: Deviation from the mesh using linear (left) and parabolic (right) ribbons. Relative deviations with respect to the
bounding box are (-0.38%, +0.45%) for the G1, and (-0.22%, +0.11%) for the G2 case.
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Appendix A: Surface Curvature Formulae

The details of computing surface curvatures for cases (i) and (iv) in
Section 2 are given, as follows.

Underdetermined Case
We write W1 and W2 in terms of W12 as

Wi = aiW12 +bi, i ∈ {1,2},

using

a1 = 2(s2c2s2
1− s1c1s2

2)/d, b1 = (k1s2
2− k2s2

1)/d,

a2 = 2(s1c1c2
2− s2c2c2

1)/d, b2 = (k2c2
1− k1c2

2)/d,

where d = s2
2c2

1− s2
1c2

2, si = sinωi, and ci = cosωi. Applying

1/κ
2
1 +1/κ

2
2 =

κ2
1 +κ2

2

κ2
1κ2

2
=

W 2
1 +W 2

2 +2W 2
12[

W1W2−W 2
12
]2

= f (W1,W2,W12) = f̂ (W12),

leads to the third-degree equation

f̂ ′(W12) = c3W 3
12 + c2W 2

12 + c1W12 + c0 = 0,

where the coefficients ci are

c3 = 2
(
(a1−a2)

2−a1a2(a2
1 +a2

2)+2
)
,

c2 = 6(1−a1a2)(a1b1 +a2b2),

c1 = 2
(

2
(

b2
1 +b2

2 +b1b2

)
−3a1a2

(
b2

1 +b2
2

))
,

c0 = −2
(

a1b3
2 +a2b3

1

)
.

Solving the equation gives W12, and from that W1 and W2 can be
determined. Using the equations

κ1,2 = (W1 +W2±
√

D)/2,

D = W 2
1 +W 2

2 −2W1W2 +4W 2
12,
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we can compute the principal curvatures; we get the angle λ from

sin2
λ =

W1−κ1

κ2−κ1
.

Note, that there is a slight ambiguity here — we need the negative
root when W12 < 0, and the positive otherwise.

Constrained Case

In the same vein as above, we write the minimization as

∑
i

(
W1c2

i +W2s2
i +2W12sici− ki

)2
→ min,

and augment it with a Λ multiplicator:

f (W1,W2,W12,Λ) = ∑
i

(
W1c2

i +W2s2
i +2W12sici− ki

)2

+Λ

(
W1c2

0 +W2s2
0 +2W12s0c0− k0

)
.

We need to solve the equation system ∂

∂λ
f = 0, ∂

∂W1
f = 0, ∂

∂W2
f = 0,

∂

∂W12
f = 0, leading to
c2

0 s2
0 s0c0 0

2c4
i 2s2

i c2
i 4sic3

i c2
0

2s2
i c2

i 2s4
i 4s3

i ci s2
0

2sic3
i 2s3

i ci 4s2
i c2

i s0c0

 ·


W1
W2
W12
Λ

 =


k0

2c2
i ki

2s2
i ki

2siciki

 ,
with an implicit sum for all terms with an i index. Note, that if the ωi
directions are fixed, we can speed up the computation by precom-
puting the LU decomposition of this matrix.

Appendix B: Proof of Continuity

We provide here the outline of a proof that extended Gregory
patches match the parabolic ribbons in a G2 sense. To save space,
arguments of some functions are omitted, when this cannot cause
any ambiguity. From here onwards, we evaluate points on the ith
side, where ∆i = 0, si−1 = 1 and si+1 = 0.

The reproduction of the cross-derivatives on side i depends on
Ii,i−1 and Ii+1,i. These, per definition, interpolate the R−i and R+

i
ribbons, respectively, i.e.,

Ii,i−1(si,1) = Ri(si,0) = Ii+1,i(0, si),

∂

∂w
Ii,i−1(si,1) =

∂

∂w
Ri(si,0) =

∂

∂w
Ii+1,i(0, si),

∂2

∂w2
Ii,i−1(si,1) =

∂2

∂w2
R−i (si,0),

∂2

∂w2
R+

i (si,0) =
∂2

∂w2
Ii+1,i(0, si),

where Ri is used to signify when R−i and R+
i are the same. The di-

rection w is equal to u or v, or an arbitrary direction in the domain, as
before. Recall our parameterization requirement from Section 4.3,

−
∂si−1

∂w
=

∂si+1

∂w

(
=

∂di

∂w

)
,

that ensures the equality of first derivatives, since

∂

∂si−1
R−i

∂si−1

∂w
=

∂

∂si+1
R+

i
∂si+1

∂w
.

The second derivatives, on the other hand, are different.

We will use two important properties of the blending functions
related to the ith boundary, which we list here without proof:

Bi,i−1 +Bi+1,i = 1, (24)

∂k

∂wk
B j, j−1 = 0, j /∈ {i, i+1}, k ∈ {1,2} (25)

From the above it also follows that

∂k

∂wk
(B j, j−1 +B j+1, j) = 0, j /∈ {i−1, i+1}, k ∈ {1,2} (26)

In the following subsections we prove that the surface reproduces
the parabolic ribbon in C0, C1, and G2 sense.

C0 continuity. This is trivially true, using property (24):

S = R−i Bi,i−1 +R+
i Bi+1,i

= Ri(si,0)(Bi,i−1 +Bi+1,i) = Ri(si,0).

C1 continuity. Half of the equation vanishes due to (25), leaving

∂

∂w
S =

∂

∂w
R−i Bi,i−1 +

∂

∂w
R+

i Bi+1,i

+

[
R−i

∂

∂w
Bi,i−1 +R+

i
∂

∂w
Bi+1,i

]
.

Since R−i = R+
i , we can use property (26) to eliminate the last term:

∂

∂w
S =

∂

∂w
Ri(si,0)(Bi+1,i−Bi,i−1) =

∂

∂w
Ri(si,0).

G2 continuity. Similarly, we can eliminate a large part of the
equation using (25) again, after which the following remains:

∂2

∂w2
S = 2

[
∂

∂w
R−i

∂

∂w
Bi,i−1 +

∂

∂w
R+

i
∂

∂w
Bi+1,i

]
+

∂2

∂w2
R−i Bi,i−1 +

∂2

∂w2
R+

i Bi+1,i

+

[
R−i

∂2

∂w2
Bi,i−1 +R+

i
∂2

∂w2
Bi+1,i

]
.

The first and last terms vanish due to (26). Substituting the deriva-
tives of R−i and R+

i into the equation, we get

∂2

∂w2
S = P′i (si)

∂2si

∂w2
+Ti(si)

(
∂2si+1

∂w2
Bi+1,i +

∂2si−1

∂w2
Bi,i−1

)
+P′′i (si)

(
∂si

∂w

)2

+2T ′i (si)
∂si

∂w
∂di

∂w
+Ci(si)

(
∂di

∂w

)2

,

using the equivalent ∂di
∂w instead of − ∂si−1

∂w and ∂si+1
∂w . The first and

second derivatives by di are much simpler:

∂

∂di
S =

∂

∂di
Ri(si,0) = Ti(si),

∂2

∂d2
i

S = Ci(si)+ξi ·Ti(si),

where ξi is an appropriate constant. Consequently, the curvature in
this direction is

κ =
Ti(si)× (Ci(si)+ξ ·Ti(si))

‖Ti(si)‖3 =
Ti(si)×Ci(si)

‖Ti(si)‖3 ,

which is the same as the curvature of the ribbon Ri, thus this proves
G2 continuity via the Linkage Curve Theorem.
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