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Triskelion motif in Newgrange, Ireland
from the Neolithic Period (c. 3200 BC)
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W. Sutherland: The Shipbuilders Assistant.
London, 1755.




Aesthetic measure

Birkhoff on the curvature of vase contours:
» Curvature should vary continuously
» Curvature should not oscillate more than once

» The maximum rate of change of curvature should be minimal

G. D. Birkhoff: Aesthetic Measure. Harvard University Press, Cambridge, 1933.



Fair curves

Fairness metrics Aesthetic curves

Farin's Definition

A curve is fair if its curvature
plot is continuous and consists
of only a few monotone pieces.

using Construction
Bézier Bézier polygon
B-spline Typical curve

NURBS Class A Bézier
etc.

Logarithmic spiral
Clothoid curve
Quaternion IC
GCS

Log-aesthetic curve
GLAC

» Generic curves require smoothing

» by post-processing
» by variational fitting techniques

» Curve representations with intrinsic smoothness?

» Curves with monotone curvature plots
» Limit our scope to 2D curves

» Cesaro equation

» Curvature as a function of arc length: (s)

G. Farin, G. Rein, N. Sapidis, A. J. Worsey: Fairing cubic B-spline curves. CAGD 4(1-2):91-103, 1987.
K. T. Miura, R. U. Gobithaasan: Aesthetic design with log-aesthetic curves and surfaces.
In: Y. Dobashi, H. Ochiai (eds.): Mathematical Progress in Expressive Image Synthesis Ill,
Mathematics for Industry 24, pp. 107-119, 2016.



Circle

Loved since the beginning of time
Most basic curve
Cesaro equation: k(s) = ¢ (const)

Prevalent in CAD (and everywhere)
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Its use is limited in itself
» Combination of circular arcs and
straight line segments
> Only C° or G continuity

m') 7_/ zﬁ‘h

B. & T. Langley: Gothic Architecture. London, 1742.

Neolithic cult symbol, Spain



Parabola

» Menaechmus (4th century BC)
» Not always monotone curvature %

» CAD - quadratic Bézier curve

» TrueType fonts
> SVG (Q and T commands)

> k-curves * Apollonius’ Conics (in Arabic, IX. c.)

» Nice physical properties
» Used in bridges, arches
» Also in antennas, reflectors

The Golden Gate bridge A parabola antenna

Z. Yan, S. Schiller, G. Wilensky, N. Carr, S. Schaefer: k-curves: Interpolation at local maximum curvature.
ACM TOG 36(4):1-7, 2017.



Archimedes’ (arithmetic) spiral

» Archimedes (3rd century BC)
» Used for squaring the circle

» A line rotates with const. w, and
a point slides on it with const. v

» Polar equation: r = a+ b¢

Source: Wikipedia (Archimedean spiral) Great Mosque of Samarra, Iraq



Generalized Archimedean spiral

» Polar equation: r = a + bg!/¢

» ¢ = —2 = lituus (Cotes, XVIII. c.)

» Augur's curved staff
» Frequently used for volutes

» ¢ = —1 = hyperbolic spiral
» ¢ =2 = Fermat’s spiral

J. D. LeRoy: Les ruines plus beaux des monuments de la Grece.
Paris, 1758.

Crosier of Archbishop
Heinrich of Finstingen



Circle

>

involute

Huygens (17th century)

» Used for pendulum clocks
Traced by the end of a rope
coiled on a circular object %
Similar to Archimedes’ spiral

» But with constant normal spacing
Cesaro equation: x(s) = c¢//s
Used for cog profiles (since Euler)
and scroll compressors (pumps)

Archimedes’ spiral & Circle involute

Coiled millipede




Logarithmic spiral

» Descartes & Bernoulli (XVII. c.)
P> “spira mirabilis”
» Polar equation: r = aeb®

» The golden spiral is also

logarithmic (b = %)

Lower part of Bernoulli's gravestone

> Cesaro equation: K/(S) - C/S (but the spiral is Archimedean)

» Very natural, self-similar pattern
» Shells, sunflowers, cyclones etc.

(B

Cyclone over Iceland (NASA)

Fibonacci spiral, approximating the golden spiral (Wikipedia)



Catenary curves

» Hooke; Leibniz, Huygens &
Bernoulli (17th century)
» Curve of a hanging chain or cable

» Equation: y = acosh(x/a)
» Cesaro equation:

k(s) = a/(s® + a°)
» Used in architecture

> Design of bridges / arches

- — Gaudi’s design of a church
A hanging chain showing a catenary curve at Santa Coloma de Cervello



Spline energies

K"(s) =0 (wooden) = clothoid g g

#(s)®ds — min (mechanical) = elastica

Spline weights by Edson International

Adeliamentan.

L. Euler: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne & Geneve, 1744.

J. Hoschek, D. Lasser: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley, 1996.



Clothoid (Euler/Cornu spiral)

v

Euler (XVIII. ¢.) & Cornu (XIX. c.)

» G2 transition between circular arcs
and straight lines

» Cesaro equation: k(s) =c-s

v

French curves have clothoid edges

» Used in urban planning
> Railroad / highway design
» Linear centripetal acceleration

A french curve

Curvature

1
R
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Length

Circular arc

Reverse Clothoid

Circular arc

Source: PWayBlog
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Aesthetic Curves in CAD
Typical Bézier Curves
Log-Aesthetic Curves



Typical Bézier Curves

> Bézier curves are typical, if each “leg” of the control polygon
is obtained by the same rotation and scale of the previous one:

AP;+1 =S- RAP,' [APJ' =Fj— Pj]

where s is the scale factor, R is a rotation matrix by «

» Class A Bézier curves are more general:
AP; = M'v
where M is a 2 x 2 matrix and v is a unit vector

» These curves can be extended to 3D, as well

Y. Mineur, T. Lichah, J. M. Castelain, H. Giaume:
A shape controled fitting method for Bézier curves. CAGD 15(9):879-891, 1998.
G. Farin: Class A Bézier curves. CAGD 23(7):573-581, 2006.



Properties

» Goal: continuous & monotone curvature
» Typical curves need constraints on s and «
» cosa>1/s (if s> 1) or cosa > s (if s <1)
» Class A Bézier curves need constraints on M
» Originally: the segments v — Mv do not
intersect the unit circle for any unit vector v
» Corrected:
> M = SD'S™1, where S is orthogonal,
D is diagonal (assuming a symmetric M)
> dip>1,dn>1,

2dy1 > dos + 1,
2dyy > di; +1

» Similar constraints for 3D curves

J. Cao, G. Wang: A note on Class A Bézier curves. CAGD 25(7):523-528, 2008.

Matrix satisfying
the constraints.

Matrix not satisfying
the constraints.



Interpolation

» We need: P, v and the end tangent v,
> Rotation angle a = Z(v,v,)/n
> Scale factor s = (||v,||/|v]|)*/"
> Condition: cosa > 1/s
= true if n is large enough

» Problems:
» Cannot set the end position
= not designer-friendly
> For ||v,| = ||v|| the degree n must be very high
» Better input: position and tangent at both ends
» Using 3 control points ag, a1, az

N. Yoshida, T. Saito: Interactive control of planar Class A Bézier curves using logarithmic curvature graphs.
CAD&A 5(1-4):121-130, 2008.



Three-point interpolation %

vVvYyyvy

Needed: Py, «, v, s (assume fixed n)
Po = ag

a = é(al — dap,ad2 — a1)/n

V= bo ai=aqr = bo-u

by is defined by the equation
n—1 )
Zbol\/lfu =ay—ag, M=s-R(a)
j=0

For n = 3 this is a quadratic equation,

otherwise polynomial root finding algorithms are needed
= just approximates the endpoint

For large n these curves converge to logarithmic spirals



Logarithmic Curvature Histogram (LCH)

Curve shape evaluation: _ Logarithmic spiral
1. Take samples of the
curvature radius (p;) at

equal arc lengths

b o N B o ®
S e e

2. Divide In(p;) into a fixed e R T S T :
number of bins
3. Plot the logarithm of the S L |
percentage of samples in the

bins
—:lnp s b i
0 0 o |

T:In B In &

Olnp dp/p os | ]

Straight lines are favorable ooes T oTs 22 3 3s

In(p)

T. Harada, F. Yoshimoto, M. Moriyama: An aesthetic curve in the field of industrial design.
Proceedings of IEEE Symposium on Visual Language, pp. 38-47, 1999.



LCH—AIlternative Interpretation

Logarithmic spiral

1. Divide the curve into j
segments with the same 2r
Ap/p ratio il ‘
2. Draw the log—log plot of R ’ . ' 5
segment lengths, i.e., In(As)
over In(p) T ]
Linearity means 3

k(s) = (cos + c1) "1/

where « is the slope

L L L
0 05 1 15 2 25 3 35 4
In(p)

N. Yoshida, T. Saito: Interactive aesthetic curve segments. TVC 22(9-11):896-905, 2006.



Log-Aesthetic Curves

K(s) = (cos + 1)~

o(s) — levs + )
N (o —1)eo

C(s) =Po+ (/os cosf(s)ds, /Os sinf(s) ds)

+ C

o=-1

o=-0.5

0=-0.125>

K. T. Miura: A general equation of aesthetic curves and its self-affinity. CAD&A(1-4):457—464, 2006.



Types of Log-Aesthetic Curves

» Circle (¢ = 00 or ¢ = 0)
» Circle involute (o = 2) fa
» Logarithmic spiral (o = 1)

> §(s) =In(cs+ca)/a+c
> Nielsen's spiral (o = 0)

> k(s) =exp(cos + c1)

> 0(s) = exp(cos + c1)/c0+ @

S. Radzevich: Principal accomplishments in

1 — the scientific theory of gearing.
> CIOthOId (a 1) MATEC Web of Conferences 287, 2019.

Involute of a circle

Roller coaster Nautilus shell



Properties

» Self-affinity
» Weaker than self-similarity
» The “tail” of a log-aesthetic arc

can be affinely transformed into
the whole curve

» Natural shape

» Egg contour, butterfly wings, etc.

» Also appears in art and design
» Japanese swords, car bodies, etc.

T .
i R

A japanese sword

~AR®

A swallowtail butterfly



Interpolation %

» Input: 3 control points P,, Py, P (as before), «a fixed

» Idea: find a segment of the curve in standard form

> Py =0, 60(0)=0, k(0) =1

» Transform the control points to match a segment

a The case of a<1

eF, B, 0

P d'ry

: A )
b The case of o>1

N. Yoshida, T. Saito: Interactive aesthetic curve segments. TVC 22(9-11):896-905, 2006.



Interpolation (2)

» In this form, the curve is defined by a scalar A:
> gg=al ¢ =1, czzﬁ

» Py, P1 and P, are “points” on the complex plane

» Py is the origin, P, corresponds to C(sp)

> sp: total length (computed from 6)

v

P; is found by intersection:

P1 = Re [Pz + effd. < Im(%)ﬂ

~ Tm(ei%)

» The input triangle and transformed triangle should be similar

» Find the value of A by iterative bisection
» For « =1, A can be arbitrarily large (open-ended bisection)
> Otherwise A € [0,04/(1 — &)]

» Quite a few corner cases...



G2 LA spline

LA spline

» 3-segment spline, connecting
with G? continuity

» Input: position, tangent &
curvature at the endpoints

> [terative; uses a Bézier curve
to estimate total arc length

» Capable of S-shapes Bezicr curve

K. T. Miura, D. Shibuya, R. U. Gobithaasan, Sh. Usuki:
Designing log-aesthetic splines with G2 continuity. CAD&A 10(6):1021-1032, 2013.



Discrete spline interpolation %

» Input:
» Points to interpolate

» Qutput:
> Discrete curve (polygon)
» Open or closed
» Input points are knots
(segment boundaries)
» Each segment is LA,
connected with G2

» Originally for clothoids,
but easily adapted to LAC

R. Schneider, L. Kobbelt: Discrete fairing of curves and surfaces based on linear curvature distribution.
Technical report, Max Planck Institut fiir Informatik, Saarbriicken, 2000.



Discrete spline interpolation (2) — Algorithm

1. Subsample the input — Q?

2. Compute discrete curvatures at input points:

det(Qf‘ - Qf'(,lv Qﬁl - Qf()
HQf( - Qf'(—IH HQf'(Jrl - Qf” HQ;(H N Qf(—IH

Kj =2

w

. Assign target curvatures to non-input points (based on «)

I

. Compute new position of non-input points

4.1 Local discrete curvature equals target curvature
4.2 Segments are arc-length parameterized:

197" — Q|| = [|QF, — @i

5. Back to step 2 (unless change was < ¢ or too many iterations)



Discrete spline interpolation (3) — Example

(a) Subsampled input.  (b) Output curve.  (c) Dense output curve.
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Extensions of Log-Aesthetic Curves
Generalized Catenaries
Trig-aesthetic Curves



Generalized Catenaries

k(s) = (cos2 +c1s+ cz)_l/“

» Generalization of LA curves (LA when ¢ =0 or ¢; = 2,/cp¢2)
» Includes catenaries: « =1, qg=1/a,c1 =0, x = a

r(s)

a

Rl 6(s) = arctan(s/a) + ¢, y = acosh(x/a)

» ‘Hyperbolic—elastic’ subfamily: o = —1, ¢t =0

1
K(s)=c-s?+1, 0(5):§c-53+s

» ¢ > 0: resembles hyperbolic spirals
» ¢ < 0: starts off similarly to elastica

P. Salvi: Generalized catenaries and trig-aesthetic curves. CAD&A 23(1):56-67, 2026.



Generalized Catenaries (o« = —1) vs. Elastica




Trig-Aesthetic Curves

k(s) = cpcos(cis + ), 6(s) = ? sin(c1s + @) + 3
1

v

‘Sine-generated curves’

\4

Used in geophysics
(models river meandering)
co: scaling

c1: shape

Cp: starting parameter

c3: starting tangent

vVvyVvYyyvyy

Simpler version:

k(s) = cos(s/c)
0(s) = csin(s/c)

P. Salvi: Generalized catenaries and trig-aesthetic curves. CAD&A 23(1):56-67, 2026.

Meanders of the Tisza river (XIX. c.)



Connection with Elastica
k(s) = cos(s/c), 6(s) = csin(s/c)

» Rivers meander along elastic curves
» Most probable path of a particle turning by normal distribution
» Minimize bending energy with fixed arc length
» Solutions of 8”(s) + Asinf(s) =0
» Maximum turning angle: arccos(1 — 5%)
» Trig-aesthetic curves are similar
» Maximum turning angle: ¢

Wreck of a Southern Railway freight train near Greenville, S.C., 1965.

H. von Schelling: Most frequent particle paths in a plane. Eos 32(2):222-226, 1951.
W. B. Langbein, L. B. Leopold: River meanders—Theory of minimum variance.
Technical Report 422-H, United States Geological Survey, 1966.
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Connection with Nielsen's Spiral
» Nielsen's Spiral (LA curve with « =0, ¢ =1/c, o =0):

GN(S)
On(s)

Differential equation form:
0 (s) — On(s)/c2 =0

» Trig-aesthetic curve:

cexp(s/c+ c1),
k(s) = exp(s/c+ 1)

0(s) = csin(s/c), 0(s)” = k(s) = cos(s/c)
Differential equation form:
0"(s) +6(s)/c*=0

» Only the sign is different
» Same when ¢ = —/ (but initial values differ)



Connection with Hyperbolic Spiral (¢ = —/)
k(s) = cos(—s/i) = cosh(s), 6(s) = sinh(s)

» Pitch angle: angle between
tangents to the spiral and a
circle with the same center

» Hyperbolic spiral:
pitch proportional to radius

» TA curve with ¢ = —1:
pitch converges to radius

(Arithmetic spiral)



Connection with Hyperbolic Spiral (¢ = —/)

Comparison of the LCH slope function

p(t) <p’(§/)(5;/) (©) _ t)> 1 p(;)(/;’;g-‘:)

2 25 3 35 4

0.8

1w

06 b

04 0 T




Hermite Interpolation

» Similarly to log-aesthetic curves

P Translation, rotation, scaling — irrelevant

» Simplified problem: two constraints (i) and Af)
A

v

o

» Variables: [sg, s1] interval (c fixed)
> If we know sy = we can compute s;
» Determine sy by binary search

> Initial bracket by sampling



Hermite Interpolation—Choosing a Solution

Multiple solutions, some inferior

c =6
s0 =32.1908
sl =38.7135




Hermite Interpolation—Choosing a Solution
Minimize arc length Es = ||Q1 — Qol|(s1 — s0)/[|C(s1) — C(s0)]|

c =6
s0 = 3. 35095
sl =16.0799




Hermite Interpolation—Choosing the Shape Parameter

Large ¢ may result in loops

c =6 !
sO0 =4.12555
sl =21.7346




Hermite Interpolation—Choosing the Shape Parameter

Choose smaller ¢ (but ¢ > |Af))

c =3
s0 =0.807365
sl =8.92481
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Connection to Archimedean Spirals
Radial Curves
Applications



Generalized Archimedean Spirals
Polar equation: r = a+ bqb%
> c = —2: lituus
» ¢ = —1: hyperbolic spiral
» ¢ = 1: Archimedean (arithmetic) spiral

» ¢ = 2: Fermat's spiral

04 T T T T T T T 5 T T T T T T T T T

Hyperbolic spiral Fermat's spiral



Radial Curves

» Vector to the center of curvature,
placed at the origin

> 0(t): tangent angle to the x axis
> 0H(t)=0(t)+ 3

> R(t) = [cos§(t),sin6(t)] - p(t)
| 4

For log-aesthetic curves:

_1
p(el) _ (GLCOOJ — ]_) a—1
(6%

» Polar equation:

_1
r = b¢a—1

» GA spiralwitha=0andc=a-1

Logarithmic spiral

(special case: r = e"?)

P. Salvi: Log-aesthetic curves and generalized Archimedean spirals. CAGD 121:102468, 2025.



LCH Slope of GA spirals with a =0

a0 =1+ it (PO - )

Approaches ¢ + 1 (slope of the related LA curve)

¢ = —1 (Hyperbolic spiral) ¢ = 2 (Fermat’s spiral)

— a = 0 (Nielsen's spiral) —a=3



Approximating LA curves by GA spirals

> LA curve segment:

C(s) = Po+ (/ cosf(s) ds,/ sinf(s) ds) , S € [Smin, Smax]
0 0
> GA spiral segment:

Cga(t) =[cost,sint] - (a+ bt%), t € [tmin, tmax]

» a=0andc=a-1

> Assume matching starting point and direction
» Simple translation/rotation

» Interpolate curvature at tmin
» If tmin is known — b can be computed

> Interpolate curvature derivative at tmin

» tnin found by binary search
» Initial frame by iterative doubling






Example 2: Nielsen's spiral vs. hyperbolic spiral (aw = 0)




Example 3: Circle involute vs. arithmetic spiral (o = 2)




Alternative Constraint

» Idea: Fix the endpoint instead of the curvature derivative
» Different error function for the bisection search

» Radial distance of the endpoint to the GA spiral

Algorithm

1. Rotate the spiral s.t. C{; s (tmin) points to 6(Smin).

2. Set Q (the spiral center) s.t. Q + Cga(tmin) = Po.
3.

4. Set tmax = tmin + arccos(u, v), or, if det(u,v) <0,

Let u and v be unit vectors from Q to Py and C(Smax)-

choose the larger angle: tyax = tmin + 27 — arccos(u, v).
The error is [|[C(smax) — Q|| — [|Cca (tmax)||-



Example 1b: clothoid vs. lituus (v = —1)

/




Example 2b: Nielsen's spiral vs. hyperbolic spiral (v = 0)

/




Example 3b: Circle involute vs. arithmetic spiral (a = 2)




Example 4: Good Approximation (o = —%, tmin ~ 9.88)



Example 5: Bad Approximation (o = —1, tyi, =~ 1.42)

\/




Reconstructing Log-Aesthetic Curves from Radials

» From the construction: ||C'(t)]| = ||R(%)]|

C(t):/ot[g 01].R(t)dt

» Explicit equations for some cases, e.g.:
» b=1, ¢ =1 (circle involute):

» Inverse radial:

[tcost —sint, tsint + cos t]
— _ 1.
> b= ]., C = 5
[(t? — 2)cost — 2tsint, (t° — 2)sin t + 2t cos t]

> etc.

» May involve incomplete gamma functions



Generalized Log-Aesthetic Curves

What if a £ 07
» Arithmetic spirals (¢ = 1): just a shift
> ¢ < 0: LCH slope diverges into +00

» ¢ > 0: Still converges to c+1

c=13,a€{0,20,40,60,80} c=2,a€{0,1,2,3,4}
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Invariants of Curve Families



Cesaro's Invariants
» Series of radii of curvature:

P = P P(k) = PP’(k—1)

dp— y
> piry) = 242, all radii are of the same scale

> Invariant: f(p, pa1y, -5 pk)) =0

» Example: parabola with stretch a (e.g. y = ax? + bx + ¢)

sec®
2a

> p= = 9p° +4pfy) — 3pp2) =0

> Proposition: use f(p, p(1), -, p(k)) = const.
> More information (eliminate only non-shape parameters)
» Often more concise expressions

» E.g. parabola: (p%l)/p2 +9)3/p? = (54a)?
» Better for aesthetic curves: x, k', K", ...

» ODE form: 0" = f(0,0") = v’ = , useful for plotting

E. Cesaro: Lezioni di geometria intrinseca. Naples, 1896.



Table of Invariants

Elastica ‘

Intrinsic en(VAs, )
ODE
Constant | /% + r"?/r% = N2
Invariant | sr'" + k' (k* — K")

Log-Aesthetic Curves (a # 0) | Nielsen's spiral (o = 0) |
Intrinsic (s + 1)_§ exp(s)
ODE
Constant ke K =a+1 N/A
Invariant K2R + kE'R" = 2kK"? Kk — K

Trig-Aesthetic Curves ‘ Complex TAC ‘
Intrinsic cos(s/c) cosh(s/c)
ODE
Constant (1- hz)/hlz c? <=
Invariant kE'? + K (1 — K?) =

Circle / Clothoid / Nielsen's spiral / TAC common constant form: "/
LAC-TAC common constant form: xr'’/k's" = 2a.+ 1 (Nielsen ~ TAC)

P. Salvi: A note on invariants of aesthetic curve families. (in preparation)
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Conclusion

» Log-aesthetic curve family
» Generalizes classical curves
P 3-point interpolation
» Discrete spline
» Generalizations
» Generalized catenaries
» Trig-aesthetic curves
» & Hyperbolic/Nielsen's spiral
> & Elastica
» < Archimedean spirals
P> Approximation

Invariants of curve families

Spirals of sunflower seeds

https://3dgeo.iit.bme.hu/
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