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Triskelion motif in Newgrange, Ireland
from the Neolithic Period (c. 3200 BC)

W. Sutherland: The Shipbuilders Assistant.
London, 1755.



Aesthetic measure

Birkhoff on the curvature of vase contours:

▶ Curvature should vary continuously

▶ Curvature should not oscillate more than once

▶ The maximum rate of change of curvature should be minimal

G. D. Birkhoff: Aesthetic Measure. Harvard University Press, Cambridge, 1933.



Fair curves

Farin’s Definition

A curve is fair if its curvature
plot is continuous and consists
of only a few monotone pieces.

▶ Generic curves require smoothing
▶ by post-processing
▶ by variational fitting techniques

▶ Curve representations with intrinsic smoothness?
▶ Curves with monotone curvature plots
▶ Limit our scope to 2D curves

▶ Cesàro equation
▶ Curvature as a function of arc length: κ(s)

G. Farin, G. Rein, N. Sapidis, A. J. Worsey: Fairing cubic B-spline curves. CAGD 4(1–2):91–103, 1987.
K. T. Miura, R. U. Gobithaasan: Aesthetic design with log-aesthetic curves and surfaces.

In: Y. Dobashi, H. Ochiai (eds.): Mathematical Progress in Expressive Image Synthesis III,
Mathematics for Industry 24, pp. 107–119, 2016.



Circle

▶ Loved since the beginning of time

▶ Most basic curve

▶ Cesàro equation: κ(s) = c (const)

▶ Prevalent in CAD (and everywhere)

▶ Its use is limited in itself
▶ Combination of circular arcs and

straight line segments
▶ Only C 0 or G 1 continuity

B. & T. Langley: Gothic Architecture. London, 1742.

Neolithic cult symbol, Spain



Parabola

▶ Menaechmus (4th century BC)

▶ Not always monotone curvature ⋆

▶ CAD – quadratic Bézier curve
▶ TrueType fonts
▶ SVG (Q and T commands)
▶ κ-curves ⋆

▶ Nice physical properties
▶ Used in bridges, arches
▶ Also in antennas, reflectors

The Golden Gate bridge

Apollonius’ Conics (in Arabic, IX. c.)

A parabola antenna

Z. Yan, S. Schiller, G. Wilensky, N. Carr, S. Schaefer: κ-curves: Interpolation at local maximum curvature.
ACM TOG 36(4):1–7, 2017.



Archimedes’ (arithmetic) spiral

▶ Archimedes (3rd century BC)
▶ Used for squaring the circle

▶ A line rotates with const. ω, and
a point slides on it with const. v

▶ Polar equation: r = a+ bϕ

Source: Wikipedia (Archimedean spiral) Great Mosque of Samarra, Iraq



Generalized Archimedean spiral

▶ Polar equation: r = a+ bϕ1/c

▶ c = −2 ⇒ lituus (Cotes, XVIII. c.)
▶ Augur’s curved staff
▶ Frequently used for volutes

▶ c = −1 ⇒ hyperbolic spiral

▶ c = 2 ⇒ Fermat’s spiral

J. D. LeRoy: Les ruines plus beaux des monuments de la Grèce.
Paris, 1758.

Crosier of Archbishop
Heinrich of Finstingen



Circle involute

▶ Huygens (17th century)
▶ Used for pendulum clocks

▶ Traced by the end of a rope
coiled on a circular object ⋆

▶ Similar to Archimedes’ spiral
▶ But with constant normal spacing

▶ Cesàro equation: κ(s) = c/
√
s

▶ Used for cog profiles (since Euler)
and scroll compressors (pumps)

Archimedes’ spiral & Circle involute

Hawaiian fern

Coiled millipede



Logarithmic spiral

▶ Descartes & Bernoulli (XVII. c.)
▶ “spira mirabilis”

▶ Polar equation: r = aebϕ

▶ The golden spiral is also
logarithmic (b = lnφ

π/2)

▶ Cesàro equation: κ(s) = c/s

▶ Very natural, self-similar pattern
▶ Shells, sunflowers, cyclones etc.

Fibonacci spiral, approximating the golden spiral (Wikipedia)

Lower part of Bernoulli’s gravestone
(but the spiral is Archimedean)

Cyclone over Iceland (NASA)



Catenary curves

▶ Hooke; Leibniz, Huygens &
Bernoulli (17th century)
▶ Curve of a hanging chain or cable

▶ Equation: y = a cosh(x/a)

▶ Cesàro equation:
κ(s) = a/(s2 + a2)

▶ Used in architecture
▶ Design of bridges / arches

A hanging chain showing a catenary curve
Gaudi’s design of a church
at Santa Coloma de Cervello



Spline energies

κ′′(s) = 0 (wooden) ⇒ clothoid∫
κ(s)2 ds → min (mechanical) ⇒ elastica

Spline weights by Edson International

L. Euler: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne & Geneve, 1744.

J. Hoschek, D. Lasser: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley, 1996.



Clothoid (Euler/Cornu spiral)

▶ Euler (XVIII. c.) & Cornu (XIX. c.)

▶ G 2 transition between circular arcs
and straight lines

▶ Cesàro equation: κ(s) = c · s
▶ French curves have clothoid edges

▶ Used in urban planning
▶ Railroad / highway design
▶ Linear centripetal acceleration

A french curve Source: PWayBlog
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Typical Bézier Curves
▶ Bézier curves are typical, if each “leg” of the control polygon

is obtained by the same rotation and scale of the previous one:

∆Pi+1 = s · R∆Pi [∆Pj = Pj+1 − Pj ]

where s is the scale factor, R is a rotation matrix by α

▶ Class A Bézier curves are more general:

∆Pi = M iv

where M is a 2× 2 matrix and v is a unit vector

▶ These curves can be extended to 3D, as well

Y. Mineur, T. Lichah, J. M. Castelain, H. Giaume:
A shape controled fitting method for Bézier curves. CAGD 15(9):879–891, 1998.

G. Farin: Class A Bézier curves. CAGD 23(7):573–581, 2006.



Properties

▶ Goal: continuous & monotone curvature

▶ Typical curves need constraints on s and α
▶ cosα > 1/s (if s > 1) or cosα > s (if s ≤ 1)

▶ Class A Bézier curves need constraints on M

▶ Originally: the segments v −Mv do not
intersect the unit circle for any unit vector v

▶ Corrected:
▶ M = SD iS−1, where S is orthogonal,

D is diagonal (assuming a symmetric M)
▶ d11 ≥ 1, d22 ≥ 1,

2d11 ≥ d22 + 1,
2d22 ≥ d11 + 1

▶ Similar constraints for 3D curves

Matrix satisfying
the constraints.

Matrix not satisfying
the constraints.

J. Cao, G. Wang: A note on Class A Bézier curves. CAGD 25(7):523–528, 2008.



Interpolation

▶ We need: P0, v and the end tangent vn
▶ Rotation angle α = ∠(v, vn)/n
▶ Scale factor s = (∥vn∥/∥v∥)1/n
▶ Condition: cosα > 1/s

⇒ true if n is large enough

▶ Problems:
▶ Cannot set the end position

⇒ not designer-friendly
▶ For ∥vn∥ ≈ ∥v∥ the degree n must be very high

▶ Better input: position and tangent at both ends
▶ Using 3 control points a0, a1, a2

N. Yoshida, T. Saito: Interactive control of planar Class A Bézier curves using logarithmic curvature graphs.
CAD&A 5(1-4):121–130, 2008.



Three-point interpolation ⋆

▶ Needed: P0, α, v, s (assume fixed n)

▶ P0 = a0
▶ α = ∠(a1 − a0, a2 − a1)/n

▶ v = b0 · a1−a0
∥a1−a0∥ =: b0 · u

▶ b0 is defined by the equation

n−1∑
j=0

b0M
ju = a2 − a0, M = s · R(α)

▶ For n = 3 this is a quadratic equation,
otherwise polynomial root finding algorithms are needed
⇒ just approximates the endpoint

▶ For large n these curves converge to logarithmic spirals



Logarithmic Curvature Histogram (LCH)

Curve shape evaluation:

1. Take samples of the
curvature radius (ρi ) at
equal arc lengths

2. Divide ln(ρi ) into a fixed
number of bins

3. Plot the logarithm of the
percentage of samples in the
bins

→ : ln ρ

↑ : ln
∂s

∂ ln ρ
= ln

∂s

∂ρ/ρ

Straight lines are favorable

Logarithmic spiral

T. Harada, F. Yoshimoto, M. Moriyama: An aesthetic curve in the field of industrial design.
Proceedings of IEEE Symposium on Visual Language, pp. 38–47, 1999.



LCH—Alternative Interpretation

1. Divide the curve into
segments with the same
∆ρ/ρ ratio

2. Draw the log–log plot of
segment lengths, i.e., ln(∆s)
over ln(ρ)

Linearity means

κ(s) = (c0s + c1)
−1/α

where α is the slope

Logarithmic spiral

N. Yoshida, T. Saito: Interactive aesthetic curve segments. TVC 22(9-11):896–905, 2006.



Log-Aesthetic Curves

κ(s) = (c0s + c1)
−1/α

θ(s) =
α(c0s + c1)

(α−1)/α

(α− 1)c0
+ c2

C(s) = P0 +

(∫ s

0
cos θ(s) ds,

∫ s

0
sin θ(s) ds

)

K. T. Miura: A general equation of aesthetic curves and its self-affinity. CAD&A(1–4):457–464, 2006.



Types of Log-Aesthetic Curves

▶ Circle (α = ∞ or c0 = 0)

▶ Circle involute (α = 2)
▶ Logarithmic spiral (α = 1)

▶ θ(s) = ln(c0s + c1)/c0 + c2
▶ Nielsen’s spiral (α = 0)

▶ κ(s) = exp(c0s + c1)
▶ θ(s) = exp(c0s + c1)/c0 + c2

▶ Clothoid (α = −1)

Roller coaster

S. Radzevich: Principal accomplishments in
the scientific theory of gearing.

MATEC Web of Conferences 287, 2019.

Nautilus shell



Properties

▶ Self-affinity
▶ Weaker than self-similarity
▶ The “tail” of a log-aesthetic arc

can be affinely transformed into
the whole curve

▶ Natural shape
▶ Egg contour, butterfly wings, etc.

▶ Also appears in art and design
▶ Japanese swords, car bodies, etc.

A japanese sword

Scaling a segment shows self-affinity

A swallowtail butterfly



Interpolation ⋆

▶ Input: 3 control points Pa, Pb, Pc (as before), α fixed

▶ Idea: find a segment of the curve in standard form
▶ P0 = 0, θ(0) = 0, κ(0) = 1
▶ Transform the control points to match a segment

N. Yoshida, T. Saito: Interactive aesthetic curve segments. TVC 22(9-11):896–905, 2006.



Interpolation (2)

▶ In this form, the curve is defined by a scalar Λ:
▶ c0 = αΛ, c1 = 1, c2 =

1
(α−1)Λ

▶ P0, P1 and P2 are “points” on the complex plane
▶ P0 is the origin, P2 corresponds to C(s0)

▶ s0: total length (computed from θd)

▶ P1 is found by intersection:

P1 = Re

[
P2 + e iθd ·

(
− Im(P2)

Im(e iθd )

)]
▶ The input triangle and transformed triangle should be similar

▶ Find the value of Λ by iterative bisection
▶ For α = 1, Λ can be arbitrarily large (open-ended bisection)
▶ Otherwise Λ ∈ [0, θd/(1− α)]

▶ Quite a few corner cases...



G 2 LA spline

▶ 3-segment spline, connecting
with G 2 continuity

▶ Input: position, tangent &
curvature at the endpoints

▶ Iterative; uses a Bézier curve
to estimate total arc length

▶ Capable of S-shapes

K. T. Miura, D. Shibuya, R. U. Gobithaasan, Sh. Usuki:
Designing log-aesthetic splines with G2 continuity. CAD&A 10(6):1021–1032, 2013.



Discrete spline interpolation ⋆

▶ Input:
▶ Points to interpolate

▶ Output:
▶ Discrete curve (polygon)
▶ Open or closed
▶ Input points are knots

(segment boundaries)
▶ Each segment is LA,

connected with G 2

▶ Originally for clothoids,
but easily adapted to LAC

R. Schneider, L. Kobbelt: Discrete fairing of curves and surfaces based on linear curvature distribution.
Technical report, Max Planck Institut für Informatik, Saarbrücken, 2000.



Discrete spline interpolation (2) – Algorithm

1. Subsample the input → Q0
i

2. Compute discrete curvatures at input points:

κi = 2
det(Qk

i −Qk
i−1,Q

k
i+1 −Qk

i )∥∥Qk
i −Qk

i−1

∥∥∥∥Qk
i+1 −Qk

i

∥∥∥∥Qk
i+1 −Qk

i−1

∥∥
3. Assign target curvatures to non-input points (based on α)

4. Compute new position of non-input points

4.1 Local discrete curvature equals target curvature
4.2 Segments are arc-length parameterized:∥∥Qk+1

i −Qk
i−1

∥∥ =
∥∥Qk

i+1 −Qk+1
i

∥∥
5. Back to step 2 (unless change was < ε or too many iterations)



Discrete spline interpolation (3) – Example

(a) Subsampled input. (b) Output curve. (c) Dense output curve.
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Generalized Catenaries

κ(s) = (c0s
2 + c1s + c2)

−1/α

▶ Generalization of LA curves (LA when c0 = 0 or c1 = 2
√
c0c2)

▶ Includes catenaries: α = 1, c0 = 1/a, c1 = 0, c2 = a

κ(s) =
a

s2 + a2
, θ(s) = arctan(s/a) + c, y = a cosh(x/a)

▶ ‘Hyperbolic–elastic’ subfamily: α = −1, c1 = 0

κ(s) = c · s2 + 1, θ(s) =
1

3
c · s3 + s

▶ c > 0: resembles hyperbolic spirals
▶ c < 0: starts off similarly to elastica

P. Salvi: Generalized catenaries and trig-aesthetic curves. CAD&A 23(1):56–67, 2026.



Generalized Catenaries (α = −1) vs. Elastica



Trig-Aesthetic Curves

κ(s) = c0 cos(c1s + c2), θ(s) =
c0
c1

sin(c1s + c2) + c3

▶ ‘Sine-generated curves’

▶ Used in geophysics
(models river meandering)

▶ c0: scaling

▶ c1: shape

▶ c2: starting parameter

▶ c3: starting tangent

▶ Simpler version:

κ(s) = cos(s/c)

θ(s) = c sin(s/c) Meanders of the Tisza river (XIX. c.)

P. Salvi: Generalized catenaries and trig-aesthetic curves. CAD&A 23(1):56–67, 2026.



Connection with Elastica
κ(s) = cos(s/c), θ(s) = c sin(s/c)

▶ Rivers meander along elastic curves
▶ Most probable path of a particle turning by normal distribution
▶ Minimize bending energy with fixed arc length
▶ Solutions of θ′′(s) + λ sin θ(s) = 0
▶ Maximum turning angle: arccos(1− 1

2λ )
▶ Trig-aesthetic curves are similar

▶ Maximum turning angle: c

Wreck of a Southern Railway freight train near Greenville, S.C., 1965.

H. von Schelling: Most frequent particle paths in a plane. Eos 32(2):222–226, 1951.
W. B. Langbein, L. B. Leopold: River meanders—Theory of minimum variance.

Technical Report 422-H, United States Geological Survey, 1966.



Trig-Aesthetic Curves vs. Elastica

2 0.7227
1 1.0472

0.5 1.5708

0.4 1.85

0.35 2.05

0.3027 2.4048

0.282.7

0.2513

0.254

0.2495

0.210



Connection with Nielsen’s Spiral
▶ Nielsen’s Spiral (LA curve with α = 0, c0 = 1/c, c2 = 0):

θN(s) = c exp(s/c + c1),

θ′N(s) = κ(s) = exp(s/c + c1)

Differential equation form:

θ′′N(s)− θN(s)/c
2 = 0

▶ Trig-aesthetic curve:

θ(s) = c sin(s/c), θ(s)′′ = κ(s) = cos(s/c)

Differential equation form:

θ′′(s) + θ(s)/c2 = 0

▶ Only the sign is different
▶ Same when c = −i (but initial values differ)



Connection with Hyperbolic Spiral (c = −i)

κ(s) = cos(−s/i) = cosh(s), θ(s) = sinh(s)

▶ Pitch angle: angle between
tangents to the spiral and a
circle with the same center

▶ Hyperbolic spiral:
pitch proportional to radius

▶ TA curve with c = −i :
pitch converges to radius

(Arithmetic spiral)



Connection with Hyperbolic Spiral (c = −i)

Comparison of the LCH slope function

α(t) = 1 +
ρ(t)

ρ′(t)2

(
ρ′(t)s ′′(t)

s ′(t)
− ρ′′(t)

)
= 1− ρ(s)ρ′′(s)

ρ′(s)2



Hermite Interpolation

▶ Similarly to log-aesthetic curves

▶ Translation, rotation, scaling → irrelevant

▶ Simplified problem: two constraints (ψ and ∆θ)

▶ Variables: [s0, s1] interval (c fixed)

▶ If we know s0 ⇒ we can compute s1
▶ Determine s0 by binary search

▶ Initial bracket by sampling



Hermite Interpolation—Choosing a Solution

Multiple solutions, some inferior

 c  = 6
 s0 = 32.1908
 s1 = 38.7135



Hermite Interpolation—Choosing a Solution

Minimize arc length Es = ∥Q1 −Q0∥(s1 − s0)/∥C(s1)− C(s0)∥

 c  = 6
 s0 = 3.35095
 s1 = 16.0799



Hermite Interpolation—Choosing the Shape Parameter

Large c may result in loops

 c  = 6
 s0 = 4.12555
 s1 = 21.7346



Hermite Interpolation—Choosing the Shape Parameter

Choose smaller c (but c ≥ |∆θ|)

 c  = 3
 s0 = 0.807365
 s1 = 8.92481
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Generalized Archimedean Spirals

Polar equation: r = a+ bϕ
1
c

▶ c = −2: lituus

▶ c = −1: hyperbolic spiral

▶ c = 1: Archimedean (arithmetic) spiral

▶ c = 2: Fermat’s spiral

Hyperbolic spiral Fermat’s spiral



Radial Curves

▶ Vector to the center of curvature,
placed at the origin

▶ θ(t): tangent angle to the x axis

▶ θ⊥(t) = θ(t) + π
2

▶ R(t) = [cos θ⊥(t), sin θ⊥(t)] · ρ(t)
▶ For log-aesthetic curves:

ρ(θ⊥) =

(
θ⊥c0

α− 1

α

) 1
α−1

▶ Polar equation:

r = bϕ
1

α−1

▶ GA spiral with a = 0 and c = α− 1

Logarithmic spiral

(special case: r = ebϕ)

P. Salvi: Log-aesthetic curves and generalized Archimedean spirals. CAGD 121:102468, 2025.



LCH Slope of GA spirals with a = 0

α(t) = 1 +
ρ(t)

ρ′(t)2

(
ρ′(t)s ′′(t)

s ′(t)
− ρ′′(t)

)
Approaches c + 1 (slope of the related LA curve)

c = −1 (Hyperbolic spiral) c = 2 (Fermat’s spiral)

→ α = 0 (Nielsen’s spiral) → α = 3



Approximating LA curves by GA spirals

▶ LA curve segment:

C(s) = P0+

(∫ s

0
cos θ(s) ds,

∫ s

0
sin θ(s) ds

)
, s ∈ [smin, smax]

▶ GA spiral segment:

CGA(t) = [cos t, sin t] · (a+ bt
1
c ), t ∈ [tmin, tmax]

▶ a = 0 and c = α− 1
▶ Assume matching starting point and direction

▶ Simple translation/rotation

▶ Interpolate curvature at tmin

▶ If tmin is known → b can be computed

▶ Interpolate curvature derivative at tmin

▶ tmin found by binary search
▶ Initial frame by iterative doubling



Example 1: clothoid vs. lituus (α = −1)



Example 2: Nielsen’s spiral vs. hyperbolic spiral (α = 0)



Example 3: Circle involute vs. arithmetic spiral (α = 2)



Alternative Constraint

▶ Idea: Fix the endpoint instead of the curvature derivative
▶ Different error function for the bisection search

▶ Radial distance of the endpoint to the GA spiral

Algorithm

1. Rotate the spiral s.t. C′
GA(tmin) points to θ(smin).

2. Set Q (the spiral center) s.t. Q+ CGA(tmin) = P0.

3. Let u and v be unit vectors from Q to P0 and C(smax).

4. Set tmax = tmin + arccos⟨u, v⟩, or, if det(u, v) < 0,
choose the larger angle: tmax = tmin + 2π − arccos⟨u, v⟩.

5. The error is ∥C(smax)−Q∥ − ∥CGA(tmax)∥.



Example 1b: clothoid vs. lituus (α = −1)



Example 2b: Nielsen’s spiral vs. hyperbolic spiral (α = 0)



Example 3b: Circle involute vs. arithmetic spiral (α = 2)



Example 4: Good Approximation (α = −3
2 , tmin ≈ 9.88)



Example 5: Bad Approximation (α = −1, tmin ≈ 1.42)



Reconstructing Log-Aesthetic Curves from Radials

▶ From the construction: ∥C′(t)∥ = ∥R(t)∥
▶ Inverse radial:

C(t) =

∫ t

0

[
0 −1
1 0

]
· R(t) dt

▶ Explicit equations for some cases, e.g.:
▶ b = 1, c = 1 (circle involute):

[t cos t − sin t, t sin t + cos t]

▶ b = 1, c = 1
2 :

[(t2 − 2) cos t − 2t sin t, (t2 − 2) sin t + 2t cos t]

▶ etc.

▶ May involve incomplete gamma functions



Generalized Log-Aesthetic Curves

What if a ̸= 0?

▶ Arithmetic spirals (c = 1): just a shift

▶ c < 0: LCH slope diverges into ±∞
▶ c > 0: Still converges to c + 1

c = 1
2
, a ∈ {0, 20, 40, 60, 80} c = 2, a ∈ {0, 1, 2, 3, 4}
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Cesàro’s Invariants

▶ Series of radii of curvature:

ρ(0) = ρ, ρ(k) = ρρ′(k−1)

▶ ρ(k) =
dρ(k−1)

dθ , all radii are of the same scale

▶ Invariant: f (ρ, ρ(1), . . . , ρ(k)) ≡ 0

▶ Example: parabola with stretch a (e.g. y = ax2 + bx + c)

▶ ρ = sec3 θ
2a ⇒ 9ρ2 + 4ρ2(1) − 3ρρ(2) ≡ 0

▶ Proposition: use f (ρ, ρ(1), . . . , ρ(k)) ≡ const.
▶ More information (eliminate only non-shape parameters)
▶ Often more concise expressions
▶ E.g. parabola: (ρ2(1)/ρ

2 + 9)3/ρ2 ≡ (54a)2

▶ Better for aesthetic curves: κ, κ′, κ′′, . . .

▶ ODE form: θ′′ = f (θ, θ′) ⇒ κ′ = f (θ, κ), useful for plotting

E. Cesàro: Lezioni di geometria intrinseca. Naples, 1896.



Table of Invariants
Elastica

Intrinsic cn(
√
λs, 1

4λ
)

ODE −λ sin θ
Constant κ′2 + κ′′2/κ2 = λ2

Invariant κκ′′′ + κ′(κ3 − κ′′)

Log-Aesthetic Curves (α ̸= 0) Nielsen’s spiral (α = 0)

Intrinsic (s + 1)−
1
α exp(s)

ODE −κα+1/α κ
Constant κκ′′/κ′2 = α+ 1 N/A
Invariant κ′2κ′′ + κκ′κ′′′ − 2κκ′′2 κ− κ′

Trig-Aesthetic Curves Complex TAC

Intrinsic cos(s/c) cosh(s/c)
ODE −θ/c2 θ/c2

Constant (1− κ2)/κ′2 = c2 ⇐
Invariant κκ′2 + κ′′(1− κ2) ⇐

Circle / Clothoid / Nielsen’s spiral / TAC common constant form: κ′′/κ
LAC–TAC common constant form: κκ′′′/κ′κ′′ = 2α+ 1 (Nielsen ≈ TAC)

P. Salvi: A note on invariants of aesthetic curve families. (in preparation)
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Conclusion

▶ Log-aesthetic curve family
▶ Generalizes classical curves
▶ 3-point interpolation
▶ Discrete spline

▶ Generalizations
▶ Generalized catenaries
▶ Trig-aesthetic curves
▶ ⇔ Hyperbolic/Nielsen’s spiral
▶ ⇔ Elastica

▶ ⇔ Archimedean spirals
▶ Approximation

▶ Invariants of curve families
Spirals of sunflower seeds

https://3dgeo.iit.bme.hu/
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