Aesthetic curve families in computer-aided design

Péter Salvi

Budapest University of Technology and Economics

SCG/CGG '25

Bratislava, September 1-4, 2025

Outline

Introduction

Motivation Classical Aesthetic Curves

Aesthetic Curves in CAD

Typical Bézier Curves Log-Aesthetic Curves

Extensions of Log-Aesthetic Curves

Generalized Catenaries
Trig-aesthetic Curves

Connection to Archimedean Spirals

Radial Curves

Applications

Invariants of Curve Families Conclusion

Triskelion motif in Newgrange, Ireland from the Neolithic Period (c. 3200 BC)

W. Sutherland: The Shipbuilders Assistant London, 1755.

Aesthetic measure

Birkhoff on the curvature of vase contours:

- Curvature should vary continuously
- Curvature should not oscillate more than once
- The maximum rate of change of curvature should be minimal

Fair curves

Farin's Definition

A curve is fair if its curvature plot is continuous and consists of only a few monotone pieces.

Fairness metrics Aesthetic curves using Construction Logarithmic spiral Bézier Bézier polygon Clothoid curve Typical curve Ouaternion IC B-spline Class A Bézier NURBS GCS Log-aesthetic curve etc. GLAC

- Generic curves require smoothing
 - by post-processing
 - by variational fitting techniques
- Curve representations with intrinsic smoothness?
 - Curves with monotone curvature plots
 - Limit our scope to 2D curves
- Cesàro equation
 - Curvature as a function of arc length: $\kappa(s)$
- G. Farin, G. Rein, N. Sapidis, A. J. Worsey: Fairing cubic B-spline curves. CAGD 4(1-2):91-103, 1987.
 K. T. Miura, R. U. Gobithaasan: Aesthetic design with log-aesthetic curves and surfaces.
 In: Y. Dobashi, H. Ochiai (eds.): Mathematical Progress in Expressive Image Synthesis III, Mathematics for Industry 24, pp. 107-119, 2016.

Circle

- Loved since the beginning of time
- Most basic curve
- ▶ Cesàro equation: $\kappa(s) = c$ (const)
- Prevalent in CAD (and everywhere)
- ▶ Its use is limited in itself
 - Combination of circular arcs and straight line segments
 - ▶ Only C^0 or G^1 continuity

B. & T. Langley: Gothic Architecture. London, 1742.

Neolithic cult symbol, Spain

Parabola

- Menaechmus (4th century BC)
- Not always monotone curvature *
- CAD quadratic Bézier curve
 - TrueType fonts
 - ► SVG (Q and T commands)
 - \triangleright κ -curves \bigstar
- Nice physical properties
 - Used in bridges, arches
 - Also in antennas, reflectors

The Golden Gate bridge

Apollonius' Conics (in Arabic, IX. c.)

A parabola antenna

Z. Yan, S. Schiller, G. Wilensky, N. Carr, S. Schaefer: κ-curves: Interpolation at local maximum curvature. ACM TOG 36(4):1–7, 2017.

Archimedes' (arithmetic) spiral

- Archimedes (3rd century BC)
 - ► Used for squaring the circle
- A line rotates with const. ω, and a point slides on it with const. v
- ▶ Polar equation: $r = a + b\phi$

Source: Wikipedia (Archimedean spiral)

Great Mosque of Samarra, Iraq

Generalized Archimedean spiral

- Polar equation: $r = a + b\phi^{1/c}$
- ▶ $c = -2 \Rightarrow$ lituus (Cotes, XVIII. c.)
 - Augur's curved staff
 - Frequently used for volutes
- $ightharpoonup c = -1 \Rightarrow$ hyperbolic spiral
- $ightharpoonup c = 2 \Rightarrow$ Fermat's spiral

J. D. LeRoy: Les ruines plus beaux des monuments de la Grèce.
Paris, 1758.

Crosier of Archbishop Heinrich of Finstingen

Circle involute

- Huygens (17th century)
 - Used for pendulum clocks
- ► Traced by the end of a rope coiled on a circular object ★
- ► Similar to Archimedes' spiral
 - But with constant normal spacing
- ▶ Cesàro equation: $\kappa(s) = c/\sqrt{s}$
- Used for cog profiles (since Euler) and scroll compressors (pumps)

Archimedes' spiral & Circle involute

Hawaiian fern

Coiled millipede

Logarithmic spiral

- Descartes & Bernoulli (XVII. c.)
 - "spira mirabilis"
- Polar equation: $r = ae^{b\phi}$
- The golden spiral is also logarithmic $(b = \frac{\ln \varphi}{\pi/2})$
- ▶ Cesàro equation: $\kappa(s) = c/s$
- ► Very natural, self-similar pattern
 - Shells, sunflowers, cyclones etc.

Fibonacci spiral, approximating the golden spiral (Wikipedia)

Lower part of Bernoulli's gravestone (but the spiral is Archimedean)

Cyclone over Iceland (NASA)

Catenary curves

- ► Hooke; Leibniz, Huygens & Bernoulli (17th century)
 - Curve of a hanging chain or cable
- Cesàro equation: $\kappa(s) = a/(s^2 + a^2)$
- ▶ Used in architecture
 - Design of bridges / arches

A hanging chain showing a catenary curve

Gaudi's design of a church at Santa Coloma de Cervello

Spline energies

$$\kappa''(s)=0$$
 (wooden) \Rightarrow clothoid $\int \kappa(s)^2 \, \mathrm{d}s \to \mathsf{min}$ (mechanical) \Rightarrow elastica

Spline weights by Edson International

- L. Euler: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne & Geneve, 1744.
- J. Hoschek, D. Lasser: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley, 1996.

Clothoid (Euler/Cornu spiral)

- ► Euler (XVIII. c.) & Cornu (XIX. c.)
- ► *G*² transition between circular arcs and straight lines
- ▶ Cesàro equation: $\kappa(s) = c \cdot s$
- French curves have clothoid edges
- Used in urban planning
 - Railroad / highway design
 - Linear centripetal acceleration

Outline

Introduction

Motivation
Classical Aesthetic Curves

Aesthetic Curves in CAD Typical Bézier Curves Log-Aesthetic Curves

Extensions of Log-Aesthetic Curves Generalized Catenaries Trig-aesthetic Curves

Connection to Archimedean Spirals
Radial Curves

Applications

Invariants of Curve Families

Conclusion

Typical Bézier Curves

Bézier curves are typical, if each "leg" of the control polygon is obtained by the same rotation and scale of the previous one:

$$\Delta \mathbf{P}_{i+1} = s \cdot R \Delta \mathbf{P}_i \quad [\Delta \mathbf{P}_j = \mathbf{P}_{j+1} - \mathbf{P}_j]$$

where s is the scale factor, R is a rotation matrix by α

Class A Bézier curves are more general:

$$\Delta \mathbf{P}_i = M^i \mathbf{v}$$

where M is a 2×2 matrix and \mathbf{v} is a unit vector

▶ These curves can be extended to 3D, as well

Y. Mineur, T. Lichah, J. M. Castelain, H. Giaume: A shape controled fitting method for Bézier curves. CAGD 15(9):879–891, 1998. G. Farin: Class A Bézier curves. CAGD 23(7):573–581, 2006.

Properties

- ► Goal: continuous & monotone curvature
- lacktriangle Typical curves need constraints on s and lpha
 - ightharpoonup $\cos lpha > 1/s$ (if s > 1) or $\cos lpha > s$ (if $s \le 1$)
- Class A Bézier curves need constraints on M
- Originally: the segments v Mv do not intersect the unit circle for any unit vector v
- Corrected:
 - ► $M = SD^iS^{-1}$, where S is orthogonal, D is diagonal (assuming a symmetric M)
 - $\begin{array}{c} b \quad d_{11} \geq 1, \ d_{22} \geq 1, \\ 2d_{11} \geq d_{22} + 1, \\ 2d_{22} \geq d_{11} + 1 \end{array}$
- Similar constraints for 3D curves

Matrix satisfying the constraints.

Matrix not satisfying the constraints.

J. Cao, G. Wang: A note on Class A Bézier curves. CAGD 25(7):523–528, 2008.

Interpolation

- ightharpoonup We need: $m {f P}_0$, $m {f v}$ and the end tangent $m {f v}_n$
 - Rotation angle $\alpha = \angle(\mathbf{v}, \mathbf{v}_n)/n$
 - Scale factor $s = (\|\mathbf{v}_n\|/\|\mathbf{v}\|)^{1/n}$
 - Condition: $\cos \alpha > 1/s$ \Rightarrow true if *n* is large enough
- ► Problems:
 - ► Cannot set the end position ⇒ not designer-friendly
 - For $\|\mathbf{v}_n\| \approx \|\mathbf{v}\|$ the degree n must be very high
- ▶ Better input: position and tangent at both ends
 - Using 3 control points a₀, a₁, a₂

Three-point interpolation ★

- ▶ Needed: P_0 , α , \mathbf{v} , s (assume fixed n)
- ▶ $P_0 = a_0$
- $\sim \alpha = \angle (a_1 a_0, a_2 a_1)/n$
- $\mathbf{v} = b_0 \cdot \frac{\mathbf{a}_1 \mathbf{a}_0}{\|\mathbf{a}_1 \mathbf{a}_0\|} =: b_0 \cdot \mathbf{u}$
- \triangleright b_0 is defined by the equation

$$\sum_{j=0}^{n-1} b_0 M^j \mathbf{u} = \mathbf{a}_2 - \mathbf{a}_0, \quad M = s \cdot R(\alpha)$$

- For n = 3 this is a quadratic equation, otherwise polynomial root finding algorithms are needed ⇒ just approximates the endpoint
- ► For large *n* these curves converge to logarithmic spirals

Logarithmic Curvature Histogram (LCH)

Curve shape evaluation:

- 1. Take samples of the curvature radius (ρ_i) at equal arc lengths
- 2. Divide $ln(\rho_i)$ into a fixed number of bins
- Plot the logarithm of the percentage of samples in the bins

Straight lines are favorable

T. Harada, F. Yoshimoto, M. Moriyama: An aesthetic curve in the field of industrial design. Proceedings of IEEE Symposium on Visual Language, pp. 38–47, 1999.

LCH—Alternative Interpretation

- 1. Divide the curve into segments with the same $\Delta \rho/\rho$ ratio
- 2. Draw the log-log plot of segment lengths, i.e., $\ln(\Delta s)$ over $\ln(\rho)$

Linearity means

$$\kappa(s) = (c_0 s + c_1)^{-1/\alpha}$$

where α is the slope

Log-Aesthetic Curves

K. T. Miura: A general equation of aesthetic curves and its self-affinity. CAD&A(1-4):457-464, 2006.

Types of Log-Aesthetic Curves

- ightharpoonup Circle ($\alpha = \infty$ or $c_0 = 0$)
- ▶ Circle involute $(\alpha = 2)$
- ▶ Logarithmic spiral $(\alpha = 1)$

$$\theta(s) = \ln(c_0 s + c_1)/c_0 + c_2$$

- ▶ Nielsen's spiral ($\alpha = 0$)
 - $\kappa(s) = \exp(c_0 s + c_1)$
 - $\theta(s) = \exp(c_0 s + c_1)/c_0 + c_2$
- ▶ Clothoid ($\alpha = -1$)

Roller coaster

S. Radzevich: Principal accomplishments in the scientific theory of gearing. MATEC Web of Conferences 287, 2019.

Nautilus shell

Properties

- Self-affinity
 - Weaker than self-similarity
 - ► The "tail" of a log-aesthetic arc can be affinely transformed into the whole curve
- Natural shape
 - Egg contour, butterfly wings, etc.
- Also appears in art and design
 - Japanese swords, car bodies, etc.

A japanese sword

Scaling a segment shows self-affinity

A swallowtail butterfly

Interpolation ★

- ▶ Input: 3 control points P_a , P_b , P_c (as before), α fixed
- Idea: find a segment of the curve in standard form
 - $P_0 = 0$, $\theta(0) = 0$, $\kappa(0) = 1$
 - Transform the control points to match a segment

N. Yoshida, T. Saito: Interactive aesthetic curve segments. TVC 22(9-11):896-905, 2006.

Interpolation (2)

- In this form, the curve is defined by a scalar Λ:
 - $c_0 = \alpha \Lambda, c_1 = 1, c_2 = \frac{1}{(\alpha 1)\Lambda}$
- $ightharpoonup P_0$, P_1 and P_2 are "points" on the complex plane
- ▶ P_0 is the origin, P_2 corresponds to $\mathbf{C}(s_0)$
 - ▶ s_0 : total length (computed from θ_d)
- $ightharpoonup P_1$ is found by intersection:

$$P_1 = \operatorname{Re}\left[P_2 + e^{i\theta_d} \cdot \left(-rac{\operatorname{Im}(P_2)}{\operatorname{Im}(e^{i\theta_d})}
ight)
ight]$$

- The input triangle and transformed triangle should be similar
 - ightharpoonup Find the value of Λ by iterative bisection
 - For $\alpha = 1$, Λ can be arbitrarily large (open-ended bisection)
 - Otherwise $\Lambda \in [0, \theta_d/(1-\alpha)]$
- Quite a few corner cases...

G^2 LA spline

- ► 3-segment spline, connecting with *G*² continuity
- ▶ Input: position, tangent & curvature at the endpoints
- Iterative; uses a Bézier curve to estimate total arc length
- Capable of S-shapes

Discrete spline interpolation *

- ► Input:
 - ▶ Points to interpolate
- Output:
 - Discrete curve (polygon)
 - Open or closed
 - Input points are knots (segment boundaries)
 - Each segment is LA, connected with G²
- Originally for clothoids, but easily adapted to LAC

R. Schneider, L. Kobbelt: Discrete fairing of curves and surfaces based on linear curvature distribution. Technical report, Max Planck Institut für Informatik, Saarbrücken, 2000.

Discrete spline interpolation (2) – Algorithm

- 1. Subsample the input $\rightarrow \mathbf{Q}_{i}^{0}$
- 2. Compute discrete curvatures at input points:

$$\kappa_i = 2\frac{\det(\mathbf{Q}_i^k - \mathbf{Q}_{i-1}^k, \mathbf{Q}_{i+1}^k - \mathbf{Q}_i^k)}{\left\|\mathbf{Q}_i^k - \mathbf{Q}_{i-1}^k\right\| \left\|\mathbf{Q}_{i+1}^k - \mathbf{Q}_i^k\right\| \left\|\mathbf{Q}_{i+1}^k - \mathbf{Q}_{i-1}^k\right\|}$$

- 3. Assign target curvatures to non-input points (based on α)
- 4. Compute new position of non-input points
 - 4.1 Local discrete curvature equals target curvature
 - 4.2 Segments are arc-length parameterized:

$$\|\mathbf{Q}_{i}^{k+1} - \mathbf{Q}_{i-1}^{k}\| = \|\mathbf{Q}_{i+1}^{k} - \mathbf{Q}_{i}^{k+1}\|$$

5. Back to step 2 (unless change was $< \varepsilon$ or too many iterations)

Discrete spline interpolation (3) – Example

Outline

Introduction

Motivation

Aesthetic Curves in CAD

Typical Bézier Curves Log-Aesthetic Curves

Extensions of Log-Aesthetic Curves Generalized Catenaries Trig-aesthetic Curves

Connection to Archimedean Spirals

Radial Curves

Applications

Invariants of Curve Families

Conclusion

Generalized Catenaries

$$\kappa(s) = (c_0 s^2 + c_1 s + c_2)^{-1/\alpha}$$

- ▶ Generalization of LA curves (LA when $c_0 = 0$ or $c_1 = 2\sqrt{c_0c_2}$)
- ▶ Includes catenaries: $\alpha = 1$, $c_0 = 1/a$, $c_1 = 0$, $c_2 = a$

$$\kappa(s) = \frac{a}{s^2 + a^2}, \quad \theta(s) = \arctan(s/a) + c, \quad y = a \cosh(x/a)$$

• 'Hyperbolic–elastic' subfamily: $\alpha = -1$, $c_1 = 0$

$$\kappa(s) = c \cdot s^2 + 1, \quad \theta(s) = \frac{1}{3}c \cdot s^3 + s$$

- ightharpoonup c > 0: resembles hyperbolic spirals
- ightharpoonup c < 0: starts off similarly to elastica

P. Salvi: Generalized catenaries and trig-aesthetic curves. CAD&A 23(1):56-67, 2026.

Generalized Catenaries $(\alpha = -1)$ vs. Elastica

Trig-Aesthetic Curves

$$\kappa(s) = c_0 \cos(c_1 s + c_2), \quad \theta(s) = \frac{c_0}{c_1} \sin(c_1 s + c_2) + c_3$$

- 'Sine-generated curves'
- Used in geophysics (models river meandering)
- \triangleright c_0 : scaling
- $ightharpoonup c_1$: shape
- c₂: starting parameter
- ▶ c₃: starting tangent
- ► Simpler version:

$$\kappa(s) = \cos(s/c)$$

 $\theta(s) = c\sin(s/c)$

Meanders of the Tisza river (XIX. c.)

Connection with Elastica

$$\kappa(s) = \cos(s/c), \quad \theta(s) = c\sin(s/c)$$

- Rivers meander along elastic curves
 - Most probable path of a particle turning by normal distribution
 - Minimize bending energy with fixed arc length
 - ▶ Solutions of $\theta''(s) + \lambda \sin \theta(s) = 0$
 - Maximum turning angle: $arccos(1-\frac{1}{2\lambda})$
- ► Trig-aesthetic curves are similar
 - Maximum turning angle: c

Wreck of a Southern Railway freight train near Greenville, S.C., 1965.

H. von Schelling: Most frequent particle paths in a plane. Eos 32(2):222-226, 1951.
W. B. Langbein, L. B. Leopold: River meanders—Theory of minimum variance.
Technical Report 422-H, United States Geological Survey, 1966.

Trig-Aesthetic Curves vs. Elastica

Connection with Nielsen's Spiral

Nielsen's Spiral (LA curve with $\alpha = 0$, $c_0 = 1/c$, $c_2 = 0$):

$$\theta_N(s) = c \exp(s/c + c_1),$$

 $\theta'_N(s) = \kappa(s) = \exp(s/c + c_1)$

Differential equation form:

$$\theta_N''(s) - \theta_N(s)/c^2 = 0$$

Trig-aesthetic curve:

$$\theta(s) = c \sin(s/c), \quad \theta(s)'' = \kappa(s) = \cos(s/c)$$

Differential equation form:

$$\theta''(s) + \theta(s)/c^2 = 0$$

- Only the sign is different
 - Same when c = -i (but initial values differ)

Connection with Hyperbolic Spiral (c = -i)

$$\kappa(s) = \cos(-s/i) = \cosh(s), \quad \theta(s) = \sinh(s)$$

- Pitch angle: angle between tangents to the spiral and a circle with the same center
- Hyperbolic spiral: pitch proportional to radius
- ► TA curve with c = -i: pitch converges to radius

Connection with Hyperbolic Spiral (c = -i)

Comparison of the LCH slope function

$$\alpha(t) = 1 + \frac{\rho(t)}{\rho'(t)^2} \left(\frac{\rho'(t)s''(t)}{s'(t)} - \rho''(t) \right) = 1 - \frac{\rho(s)\rho''(s)}{\rho'(s)^2}$$

Hermite Interpolation

- Similarly to log-aesthetic curves
- lacktriangle Translation, rotation, scaling ightarrow irrelevant
- Simplified problem: two constraints $(\psi \text{ and } \Delta \theta)$

- ▶ Variables: $[s_0, s_1]$ interval (c fixed)
- ▶ If we know $s_0 \Rightarrow$ we can compute s_1
- ightharpoonup Determine s_0 by binary search
- Initial bracket by sampling

Hermite Interpolation—Choosing a Solution

Multiple solutions, some inferior

Hermite Interpolation—Choosing a Solution

Minimize arc length $E_s = \|\mathbf{Q}_1 - \mathbf{Q}_0\|(s_1 - s_0) / \|\mathbf{C}(s_1) - \mathbf{C}(s_0)\|$

Hermite Interpolation—Choosing the Shape Parameter

Large c may result in loops

Hermite Interpolation—Choosing the Shape Parameter

Choose smaller c (but $c \ge |\Delta \theta|$)

Outline

Introduction

Motivation
Classical Aesthetic Curves

Aesthetic Curves in CAD

Typical Bézier Curves Log-Aesthetic Curves

Extensions of Log-Aesthetic Curves

Generalized Catenaries Trig-aesthetic Curves

Connection to Archimedean Spirals

Radial Curves Applications

Invariants of Curve Families

Conclusion

Generalized Archimedean Spirals

Polar equation: $r = a + b\phi^{\frac{1}{c}}$

ightharpoonup c = -2: lituus

ightharpoonup c = -1: hyperbolic spiral

ightharpoonup c = 1: Archimedean (arithmetic) spiral

ightharpoonup c = 2: Fermat's spiral

Radial Curves

- Vector to the center of curvature, placed at the origin
- \blacktriangleright $\theta(t)$: tangent angle to the x axis
- $R(t) = [\cos \theta^{\perp}(t), \sin \theta^{\perp}(t)] \cdot \rho(t)$
- ► For log-aesthetic curves:

$$ho(heta^\perp) = \left(heta^\perp c_0 rac{lpha-1}{lpha}
ight)^{rac{1}{lpha-1}}$$

▶ Polar equation:

$$r = b\phi^{\frac{1}{\alpha - 1}}$$

▶ GA spiral with a = 0 and $c = \alpha - 1$

Logarithmic spiral (special case: $r=e^{b\phi}$)

P. Salvi: Log-aesthetic curves and generalized Archimedean spirals. CAGD 121:102468, 2025.

LCH Slope of GA spirals with a = 0

$$\alpha(t) = 1 + \frac{\rho(t)}{\rho'(t)^2} \left(\frac{\rho'(t)s''(t)}{s'(t)} - \rho''(t) \right)$$

Approaches c+1 (slope of the related LA curve)

Approximating LA curves by GA spirals

▶ LA curve segment:

$$\mathbf{C}(s) = \mathbf{P}_0 + \left(\int_0^s \cos \theta(s) \, \mathrm{d}s, \int_0^s \sin \theta(s) \, \mathrm{d}s\right), \quad s \in [s_{\mathsf{min}}, s_{\mathsf{max}}]$$

► GA spiral segment:

$$\mathbf{C}_{\mathrm{GA}}(t) = [\cos t, \sin t] \cdot (a + bt^{\frac{1}{c}}), \quad t \in [t_{\mathrm{min}}, t_{\mathrm{max}}]$$

- ightharpoonup a=0 and $c=\alpha-1$
- Assume matching starting point and direction
 - Simple translation/rotation
- Interpolate curvature at t_{min}
 - ▶ If t_{\min} is known $\rightarrow b$ can be computed
- Interpolate curvature derivative at t_{min}
 - t_{min} found by binary search
 - Initial frame by iterative doubling

Example 1: clothoid vs. lituus ($\alpha = -1$)

Example 2: Nielsen's spiral vs. hyperbolic spiral ($\alpha = 0$)

Example 3: Circle involute vs. arithmetic spiral ($\alpha = 2$)

Alternative Constraint

- Idea: Fix the endpoint instead of the curvature derivative
- ▶ Different error function for the bisection search
 - ► Radial distance of the endpoint to the GA spiral

Algorithm

- 1. Rotate the spiral s.t. $\mathbf{C}'_{\mathrm{GA}}(t_{\mathrm{min}})$ points to $\theta(s_{\mathrm{min}})$.
- 2. Set **Q** (the spiral center) s.t. $\mathbf{Q} + \mathbf{C}_{GA}(t_{min}) = \mathbf{P}_0$.
- 3. Let **u** and **v** be unit vectors from **Q** to P_0 and $C(s_{max})$.
- 4. Set $t_{\text{max}} = t_{\text{min}} + \arccos\langle \mathbf{u}, \mathbf{v} \rangle$, or, if $\det(\mathbf{u}, \mathbf{v}) < 0$, choose the larger angle: $t_{\text{max}} = t_{\text{min}} + 2\pi \arccos\langle \mathbf{u}, \mathbf{v} \rangle$.
- 5. The error is $\|\mathbf{C}(s_{\max}) \mathbf{Q}\| \|\mathbf{C}_{GA}(t_{\max})\|$.

Example 2b: Nielsen's spiral vs. hyperbolic spiral ($\alpha = 0$)

Example 3b: Circle involute vs. arithmetic spiral ($\alpha = 2$)

Example 4: Good Approximation ($\alpha = -\frac{3}{2}$, $t_{\min} \approx 9.88$)

Example 5: Bad Approximation (lpha=-1, $t_{\min}pprox 1.42$)

Reconstructing Log-Aesthetic Curves from Radials

- From the construction: $\|\mathbf{C}'(t)\| = \|\mathbf{R}(t)\|$
- ► Inverse radial:

$$\mathbf{C}(t) = \int_0^t \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \cdot \mathbf{R}(t) \, \mathrm{d}t$$

- Explicit equations for some cases, e.g.:
 - \blacktriangleright b=1, c=1 (circle involute):

$$[t\cos t - \sin t, t\sin t + \cos t]$$

 $b = 1, c = \frac{1}{2}$:

$$[(t^2-2)\cos t - 2t\sin t, (t^2-2)\sin t + 2t\cos t]$$

- etc.
- May involve incomplete gamma functions

Generalized Log-Aesthetic Curves

What if $a \neq 0$?

- Arithmetic spirals (c = 1): just a shift
- c < 0: LCH slope diverges into $\pm \infty$
- ▶ c > 0: Still converges to c + 1

Outline

Introduction

Motivation

Classical Aesthetic Curves

Aesthetic Curves in CAD

Typical Bézier Curves

Extensions of Log-Aesthetic Curves

Generalized Catenaries
Trig-aesthetic Curves

Connection to Archimedean Spirals

Radial Curves
Applications

Invariants of Curve Families

Conclusion

Cesàro's Invariants

Series of radii of curvature:

$$\rho_{(0)} = \rho, \qquad \rho_{(k)} = \rho \rho'_{(k-1)}$$

- $ho_{(k)}=rac{\mathrm{d}
 ho_{(k-1)}}{\mathrm{d} heta}$, all radii are of the same scale
- linvariant: $f(\rho, \rho_{(1)}, \dots, \rho_{(k)}) \equiv 0$
- Example: parabola with stretch a (e.g. $y = ax^2 + bx + c$)

- ▶ Proposition: use $f(\rho, \rho_{(1)}, \dots, \rho_{(k)}) \equiv \text{const.}$
 - More information (eliminate only non-shape parameters)
 - Often more concise expressions
 - E.g. parabola: $(\rho_{(1)}^2/\rho^2+9)^3/\rho^2\equiv (54a)^2$
- ▶ Better for aesthetic curves: κ , κ' , κ'' , . . .
- ▶ ODE form: $\theta'' = f(\theta, \theta') \Rightarrow \kappa' = f(\theta, \kappa)$, useful for plotting

Table of Invariants

	Elastica
Intrinsic	$\operatorname{cn}(\sqrt{\lambda}s,\frac{1}{4\lambda})$
ODE	$-\lambda \sin \theta$
Constant	$\kappa'^2 + \kappa''^2 / \kappa^2 = \lambda^2$
Invariant	$\kappa \kappa''' + \kappa' (\kappa^3 - \kappa'')$

	Log-Aesthetic Curves ($lpha eq 0$)	Nielsen's spiral ($lpha=0$)
Intrinsic	$(s+1)^{-rac{1}{lpha}}$	exp(s)
ODE	$-\kappa^{\alpha+1}/\alpha$	κ
Constant	$\kappa \kappa'' / \kappa'^2 = \alpha + 1$	N/A
Invariant	$\kappa'^2\kappa'' + \kappa\kappa'\kappa''' - 2\kappa\kappa''^2$	$\kappa - \kappa'$

	Trig-Aesthetic Curves	Complex TAC
Intrinsic	$\cos(s/c)$	$\cosh(s/c)$
ODE	$-\theta/c^2$	θ/c^2
Constant	$(1-\kappa^2)/\kappa'^2 = c^2$	⇐
Invariant	$\kappa \kappa'^2 + \kappa''(1-\kappa^2)$	⇐

Circle / Clothoid / Nielsen's spiral / TAC common constant form: κ''/κ LAC-TAC common constant form: $\kappa\kappa'''/\kappa'\kappa'' = 2\alpha + 1$ (Nielsen \approx TAC)

P. Salvi: A note on invariants of aesthetic curve families. (in preparation)

Outline

Introduction

Motivation
Classical Aesthetic Curves

Aesthetic Curves in CAD

Typical Bézier Curves Log-Aesthetic Curves

Extensions of Log-Aesthetic Curves

Generalized Catenaries
Trig-aesthetic Curves

Connection to Archimedean Spirals

Applications

Invariants of Curve Families

Conclusion

Conclusion

- Log-aesthetic curve family
 - Generalizes classical curves
 - 3-point interpolation
 - Discrete spline
- Generalizations
 - Generalized catenaries
 - ► Trig-aesthetic curves
 - ► ⇔ Hyperbolic/Nielsen's spiral
 - ► ⇔ Elastica
- ► ⇔ Archimedean spirals
 - Approximation
- Invariants of curve families

Spirals of sunflower seeds

https://3dgeo.iit.bme.hu/