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Abstract
Curve network-based design is a challenging approach to supplement traditional trimmed surface modeling or
recursive subdivision for defining complex free-form shapes. The input is a collection of feature curves, that can
be directly created or extracted from manual sketches or images. The curves are built together in 3D and the
network is interpolated by smoothly connected multi-sided patches. Each patch may have arbitrary number of
free boundary curves; thus many difficulties of the traditional approaches can be avoided and there is no need to
manipulate control grids or polyhedra. This paper focuses on multi-sided transfinite surface interpolation, where
in addition to interpolating 3D curves, further design freedom is provided to control the interior of the patches. This
is achieved by supplementing auxiliary vertices, curves and even control surfaces while the boundary constraints
are retained. Different distance-based blending functions are discussed over non-regular, n-sided domains. The
concept naturally extends to creating one- and two-sided patches as well. Curve network-based design will be
demonstrated through several simple examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Creating complex free-form objects, composed of smoothly
connected surface patches is a fundamental goal in Com-
puter Aided Geometric Design. Aesthetic appearance is cru-
cial for a wide variety of objects including cars, house-
hold appliances, office furniture, containers and many oth-
ers. While the majority of such patches are four-sided, al-
most all industrial objects contain general n-sided patches
that need to be inserted into some arrangement of quadrilat-
erals. A few examples are shown in Figure 1.

Nevertheless, general topology surfacing is a tough prob-
lem, and current techniques expose deficiencies for design-
ers and CAD users. The standard approach is to combine a
collection of biparametric (generally NURBS) surfaces, then
create trimmed patches through a sequence of surface inter-
sections, finally stitch these into a single model. The funda-
mental problem is that the original boundaries of the four-
sided patch and the trimming curves have different repre-
sentational form and design flexibility. For example, creat-
ing truly symmetric three-sided patches is not possible in a
four-sided domain. Another simple example is the surface
model in Figure 2, which contains three 3-sided and two 6-

sided patches. It is not obvious at all, how the initial quadri-
lateral surfaces should be defined, how they can be stitched
together (presumably, only with numerical continuity) and
how the smoothly connected internal trimming curves can
be modified, if some redesign is needed.

Another general topology surfacing approach, widely
used in the animation industry, is based on recursively sub-
dividing a control polyhedra3. This yields a set of smoothly
connected quadrilaterals combined with n-sided surface
patches, however, difficulties here include the “ab initio”
creation of good control polyhedra. Take again the previous
simple surface model: it would be hard to set up an appropri-
ate control polyhedron, and practically impossible to directly
interpolate and edit prescribed free-form curves with sharp
edges, or smooth edges with tangential constraints.

In this paper we explore a third approach using 3D curve
networks, where an arbitrary collection of feature curves is
created, each can be manipulated directly and independently
of the other ones. The network is automatically interpolated
by multi-sided patches; their connection is watertight, and
any boundary adjustment naturally invokes the modifica-
tion of the surface model. In this way, users can focus on
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shape concepts and aesthetic requirements, and do not need
to fiddle with representational difficulties. We illustrate the
paradigm using the same simple object shown in Figure 2.
The first picture shows a manual sketch (a), which is the ba-
sis of creating a corresponding 3D network (b). The next
stage is the automatic computation of ribbons (c), which
determine the boundary constraints for multi-sided surface
patches (d). In fact, this is the clue of the whole concept,
as these patches must provide a natural blend between the
boundaries and their interior must be predictable and con-
trollable, when needed. The last two pictures show, that it
is quite straightforward to modify the topology and geome-
try of the curve network, and the surface model will change
accordingly (e,f).

The input of curve network-based design can be a set of
manual sketches, or a set of images, when the user tries to
reconstruct an existing object. Such a sequence is shown in
Figure 3, where after aligning two photographs (a), they are
mapped onto the side faces of a sketch box for 2D curve trac-
ing, by means of which a 3D network is created that even-
tually defines the final model. Note, that the surface design
may proceed without a 2D input — its starting point can also
be an a priori defined curve network template, or the user can
even design from scratch.

In this paper new techniques are proposed that extend
the capabilities of conventional transfinite interpolation. We
keep the transfinite nature of the surface patches, i.e. retain
the boundary constraints, but provide additional degrees of
freedom to perfect the interior of the surface patches, as well.
Transfinite surface interpolation is a classical area of CAGD.
Its origin goes back to the late 60’s, when Coons formu-
lated his Boolean sum surface2. In the next two decades, sev-
eral papers were published, first on triangular patches (see
summary in Farin3), and later on genuine n-sided patches,
including the pioneering work of Charrot and Gregory1, 4,
Sabin6, and Kato5.

The alternatives of creating n-sided transfinite patches
with different blending functions and parameterizations have
been recently published by the current authors8, 9. There are
also new emerging representational forms that truly general-
ize Coons’ former approach, see also a companion paper7 in
this proceedings. Concerning interior shape control, it must
be noted that the majority of papers in the literature deals
with bi-parametric surfaces and shape deformation in ap-
proximating sense unlike our approach where the empha-
sis has been placed on multi-sided patches and interpolating
auxiliary vertices and curves in the patch interior.

The outline of this paper is the following. In Section 2
we briefly revisit transfinite surface interpolation using tan-
gential ribbons; as this will be the basis of the forthcoming
discussions. In Section 3 we introduce the notion of auxil-
iary vertices and curves to adjust the shape interior, while in
Section 4 the application of so-called interior surfaces will
be discussed. Section 5 is devoted to describe one- and two-

Figure 1: Examples of nice free-form objects

sided patches. Finally, examples and suggestions for future
work conclude the paper.

2. Transfinite patches with ribbons

Multi-sided patches can be created by combining ribbon sur-
faces (see Fig. 2c) associated with the individual boundaries
using special blending functions. For our forthcoming dis-
cussion, we present one particular scheme; however, these
ideas can be expanded for other types of ribbons and pa-
rameterization schemes, as it is summarized, for example, in
Várady et al.8

An n-sided patch is generally defined over a non-regular,
convex polygonal domain as a convex combination of ribbon
surfaces:

S(u,v) =
n

∑
i=1

Ri(si,di)µi(d1, . . . ,dn).

The polygonal domain is defined in the (u,v) plane, and the
individual patch boundaries are the 3D images of the poly-
gon sides.

A ribbon surface can be any bi-parametric surface with si
and di being its local parameters. The simplest is using linear
ribbons (i.e. linear by the di parametric direction), given as

Ri(si,di) = Pi(si)+diTi(si),

where Pi(si) is the boundary curve along the i-th side,
and Ti(si) is the cross-tangent function associated with the
boundary. The local parameters of a ribbon depend on (u,v):
si = si(u,v) is the side parameter, and di = di(u,v) is the dis-
tance parameter. di represents some distance measure, i.e.,
vaguely speaking, it is 0 on the i-th side and increases in a
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Figure 2: Test surface model - (a) sketches, (b) curve network, (c) ribbons, (d) multi-sided surfaces, (e) modified model, (f)
slicing

Figure 3: Shape definition from images

monotonic way as we move inwards. The above functions of
si and di represent the so-called ribbon mapping, i.e. how the
four-sided image of the ribbons are mapped onto the polyg-
onal domain (for details see also Várady et al.8).

Blending functions. The ribbons are weighted by special
blending functions µi(d1 . . . ,dn) defined over the full do-
main. We present here rational polynomial functions. Let
Dn

i1,i2,...,in denote ∏
n
i6=i1,i2,...,in d2

i . Then

µi(d1, . . . ,dn) =
Dn

i
∑

n
j=1Dn

j
.

Figure 4: Edge blending function with contours
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(a) Weight=0.25, spider lines (b) Weight=0.25, shaded (c) Weight=0.5, spider lines (d) Weight=0.5, shaded

Figure 5: Adjusting fullness for a six-sided patch.

µi is equal to 1 along side i, and 0 for all the remain-
ing n− 1 sides where k 6= i. For all domain points the
µi-s have the partition of unity property. Such an edge-
blending function is shown in Figure 4. These type of blend-
ing functions are singular at the corner points. For exam-
ple, there is a jump between µ1(0,d2, . . . ,dn−1,ε) = 1 and
µ1(ε,d2, . . . ,dn−1,0) = 0. This singularity vanishes when
two adjacent blending functions are added at a given corner:

lim
di−1→0,

di→0

µi−1(d1,d2, . . . ,dn)+µi(d1,d2, . . . ,dn) = 1.

These blending functions ensure that the ribbons will
be reproduced along the sides. Let us evaluate an arbi-
trary point of the i-th boundary as a function of di, i.e.,
Si(di) = Ri(di)αi(di). In order to interpolate the positional
data, αi(0) must be equal to 1. The derivative at the bound-
ary is ∂Si

∂di
= R′i(di)αi(di)+Ri(di)α′i(di), so in order to inter-

polate the tangential data, α
′
i(0) must be zero. Thus for G1-

continuous cross-derivative constraints, it is sufficient to use
quadratic terms; for G2 constraints cubic terms are needed. It
can easily be shown, that this also guarantees that the effect
of the k 6= i boundaries and their cross-derivative functions
will vanish on the i-th side.

Take an example, for n = 4, i = 1,

µ1(d1,d2,d3,d4) =
d2

2d2
3d2

4
d2

1d2
2d2

3 +d2
2d2

3d2
4 +d2

3d2
4d2

1 +d2
4d2

1d2
2
,

i.e., if d1 = 0, then µ1 = 1; if d2 = 0 or d3 = 0 or d4 = 0,
then µ1 = 0.

Note: an equivalent, but computationally more efficient
formula can be used to evaluate the blending functions at the
interior points of the domain:

µi(d1, . . . ,dn) =
d−2

i

∑
n
j=1d−2

j

.

This simpler equation is singular on the sides, so there the
original formula must be used.

3. Simple shape modifications

Adjusting ribbons. In curve network-based design feature
curves are the basic entities to define a shape, but the in-
terior of the patches are not uniquely defined, and ribbons
can provide further shape control. Assume that the bound-
aries and the cross-tangent directions are given. The most
straightforward editing operation is to set the magnitudes of
the ribbons, as these balance how much the surface patch
is “glued” to the ribbons in the vicinity of the boundaries,
and where convex combination starts to dominate as we are
moving inwards. The simplest solution is to multiply the di-
rection terms by wi scalar values or scalar reparameterization
functions, then

Ri(si,di) = Pi(si)+diwi(si)Ti(si).

Adjusting simultaneously the magnitude of the ribbons
yields a global change concerning the “fullness” of the
patch, as it is shown in Figures 5a to 5d. Modifying the width
of an individual ribbon creates a local effect as shown in
Figure 6. By enlarging the magnitude of the top ribbons,n
a different fullness is obtained — this is also illustrated by
how the slices change their shape. Note, that by adjusting
the widths of the ribbons, it is possible to optimize fairness
energies for a collection of adjacent patches, as well.

Auxiliary vertices and curves. We wish to preserve the ba-
sic interpolation nature of curve network-based design, nev-
ertheless it may be desirable to assign further entities to the
interior of the patch to provide more shape control. Think of
lifting certain interior vertices or prescribing interior feature
curves, while the external ribbons are retained. Recall that
the only property of the blending functions was that the i-th
blend is 1 on the i-th boundary and zero elsewhere. By defi-
nition, an auxiliary element has an image within the domain,
and a distance measure can be defined, which guarantees that
it becomes zero on the image of the auxiliary element. Then
the corresponding blending function will be 1 there and will
vanish elsewhere. Such a vertex blending function is shown
in Figure 7. This means that the patch equation needs to be
modified, and n + k entities will be blended together (k de-
notes the number of the auxiliary elements). The blending
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(a) Initial ribbons

(b) Modified ribbons

Figure 6: Ribbon modification of six-sided patches.

Figure 7: Vertex blending function with contours

functions µi will also change and instead of the Dn
i terms,

now Dn+k
i will be used combining n+ k distance values.

This concept is illustrated by two simple examples. In the
first, two auxiliary vertices have been chosen on the surface,
which define their parametric positions. Lifting the vertices
and creating their circular ribbons determine the local prop-
erties of the modified surface after snapping; see Figures 8a
and 8b. The distribution of the blending functions in the do-
main are illustrated in Figure 9, where the “strength” of the
blends is shown. The areas show the dominance of the i-th

(a) Two auxiliary vertices and circular ribbons

(b) After snapping

Figure 8: Six-sided patch modified by auxiliary vertices.

Figure 9: Blending function distributions in the domain

blend, the boundaries between the areas show where adja-
cent blends have the same effect, thus providing a Voronoi-
like structure in the domain.

The second example shows two patches and two auxil-
iary curves. Initially, the curves are also defined on the sur-
face, in order to obtain their parametric image in the domain.
Lifting the curves leads to new features to be interpolated
(Fig. 10a). As we snap the surfaces onto them the interiors
change (Fig. 10b); keep in mind that these patches are still
single surface entities.

4. Interior patches

In the previous section we have introduced auxiliary vertices
and curves. We have increased the number of interpolants,
but used the same family of blending functions with n + k
terms. Now we are going to introduce a so-called interior
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(a) Auxiliary curve and its image on the surface

(b) After snapping

Figure 10: Two fives-sided patches modified by auxiliary
curves.

surface Sint(u,v), which is defined over the same domain and
serves to modify the interior of the original S(u,v). Here we
are going to apply alternative blending functions. Let

S∗(u,v) =
n

∑
i=1

Ri(si,di)νi(d1, . . . ,dn)

+Sint(u,v)ν0(d1, . . . ,dn).

We use the notations of Section 2 with the additional term
of Dn

0 = ∏ j=1,n d2
j . Then the blending functions are defined

as

νi(d1, . . . ,dn) =
Dn

i
∑ j Dn

j +wDn
0
, i = 1, . . . ,n,

and

ν0(d1, . . . ,dn) =
wDn

0
∑ j Dn

j +wDn
0
.

Here w is a positive constant characterizing the blend fam-
ily, this will be set later. As it can be seen, the side blends
have an extended denominator, which will not change the
basic properties, i.e., νi = 1 on the i-th side and 0 on the
other sides. The new blending function ν0 is 0 on each side,
which means the interior surface will have no effect on the
boundaries.

The above surface equation can be formulated in another
way:

S∗(u,v) = αS(u,v)+(1−α)Sint(u,v) (1)

where

α =
∑ j Dn

j

∑ j Dn
j +wDn

0
.

This expression reproduces S along the edges and gives a
weighted average of the original and the interior surface in-
side the patch. We define the constant w by means of α. Take
a domain point c as center point; this is where the weighted
average is prescribed. At point c let us evaluate all distances,
thus we obtain constant terms

Ec
j = Dn

j(d1,d2, ...,dn), j = 1, . . . ,n.

Then α = ∑ j Ec
j

∑ j Ec
j +wEc

0
and w =

(1−α)∑ j Ec
j

wEc
0

. After dividing

by Ec
0 we obtain an alternative expression of w = ∑ j

1−α

d2
j

,

where the non-zero distances d j are determined by c.

α = 0.5 will average the original and the interior surface at
the center point. If we want to interpolate the interior surface
at c and tightly approximate it in the vicinity of c, another
surface, called auxiliary surface Saux(u,v) needs to be used
in Equation 1 above. Let us assume that

Sint(u,v) = αS(u,v)+(1−α)Saux(u,v),

then

Saux(u,v) =
Sint(u,v)−αS(u,v)

1−α
.

For example, at α = 0.5

Saux(u,v) = 2∗Sint(u,v)−S(u,v).

(Note, that instead of linear blending by α, Hermite func-
tions can also be used.)

The parametric assignment of S and Sint can be realized in
a projective sense, as earlier. Imagine that we have already
computed the surface S; then any point on the interior surface
with parameters (u∗,v∗) can be projected back to S, which
will yield a parameter pair (u,v) to create a parametric as-
signment to combine the points of the two surface entities.
The effect of using interior surfaces is demonstrated in Fig-
ure 11. The first one shows the input: a patch to be modified
and the interior surface used for shape adjustment. The sec-
ond picture shows the averaging effect, while the third one
illustrates how we can reproduce the interior surface using
a corresponding auxiliary surface. In both cases the original
boundary constraints are retained.

5. One- and two-sided patches

In practical curve network-based design, one- and two-
sided patches often occur. These also must interpolate the
boundaries and match the ribbon surfaces determined by the
network. Fortunately, sweeping line parameterization and
distance-based blending can be applied in a similar way as
before.

One-sided patches. Take a closed curve r(t) and a center
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(a) Patch with its ribbons and an interior surface (blue)

(b) Superimposing the interior surface

(c) Superimposing the auxiliary surface

Figure 11: Reshaping the interior of a six-sided patch.

point c in 3D and associate an additional ribbon with it. Let
us use a circle as domain with radial sweep-lines. We apply
the same solution as for auxiliary points in Section 3 and
combine the two ribbons by a simple blending function of
the type

µi(d1,d2) =
d2

j

d2
1 +d2

2
, i, j ∈ {1,2}, i 6= j, (2)

where d1 and d2 represent the distances in the domain from
the perimeter circle and from the center point, respectively.
As an example, Figure 12a shows the defining ribbons and
the corresponding cap-like surface patch. Figure 12b shows

(a) Patch and its ribbons

(b) Mean curvature and spider lines

Figure 12: One-sided patch example “cap”.

the curvature map of the surface together with spider-like
constant parameter lines drawn on the surface in 3D.

One interesting issue is to find a good location for the cen-
ter. In the majority of cases this will be set by the user, how-
ever, setting a good default may be necessary. One simple
heuristic is to optimize the angles between the imaginary 3D
sweeping lines and the tangents at sampled data points on
the boundary, i.e.,

∑
i
(〈c− r(ti), ṙ(t)〉)2 +α|c− r(ti)|2 = min .

The second term is needed to control the sum of the chord
lengths between the center point and the points of the bound-
ary; without this, the minimum found by the related system
of equations would push the center point infinitely far from
the closed boundary curve. α is a constant that can also be
manually adjusted.

Two-sided patches. The domain of the two-sided patch is
bounded by two parabolic arcs. As it was explained in Sec-
tion 2, we search for a domain that mimics simultaneously
the 3D angles between the two given boundary curves and
their arc lengths. Figure 13 shows a simple, heuristic solu-
tion using a quadrangle. We inherit the 3D angles denoted by
α and β, and define the parabolas in such a way, that their ap-
proximate arc lengths are proportional to the 3D boundaries.
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Figure 13: Computing a two-sided domain

Figure 14: Sweeping lines in a parametric domain

The arc length of a parabolic arc is estimated by 2li + di, as
shown in the figure, and simple algebra leads to determine
the missing parameters. Having the domain, sweeping lines
are created by connecting the parabolas with the opposite
corners of the quadrangle (see one set in Figure 14). Then
normalized distances measured on the sweeping lines yield
the distance parameters, which are used for the same type
of blending functions as above in Equation 2 to combine the
two ribbons.

A simple two-sided example defined by two ribbons has
been shown earlier in Figures 6a and 6b.

6. Conclusion, future work

In this work we have focused on various aspects of curve
network-based design, in particular, how to modify the inte-
rior of multi-sided transfinite surface patches. In addition to
adjusting the widths of ribbons, additional entities — such as
auxiliary vertices, curves and interior surfaces — were com-
bined, applying variations of distance-based blending func-
tions. Challenging future research topics include fairing op-
erations for curve network-based models and point data ap-
proximation by transfinite patches, using free parameters of
the ribbon interpolants.
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