Péter Salvi, Tamás Várady

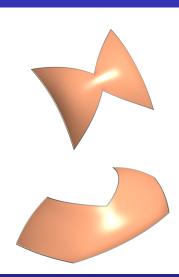
Budapest University of Technology and Economics

SMI 2018

Lisbon, June 6th-8th

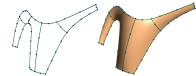
Outline

- Introduction
 - Motivation
 - Previous work
- 2 Generalized Bézier (GB) patch
 - Control structure
 - Domain & parameterization
 - Blending functions
- Concave GB patch
 - Reinterpretation
 - Building blocks
 - Additional control
- 4 Examples
- Conclusion and future work



Multi-sided patches

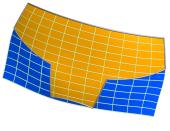
- Curve network based design
 - Feature curves
 - Automatic surface generation
- Hole filling
 - E.g. vertex blends
 - Cross-derivative constraints
- "Concave" configurations

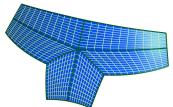


Representation?

Conventional representations used in CAD systems

- Trimmed tensor product surfaces
 - Detailed interior control
 - Continuity problems
 - Different edge types
 ⇒ inherently asymmetric
- Division into smaller quadrilaterals
 - (Semi-)automatic splitting curves
 - Underdetermined entities
 - Reduced continuity
- Our goals:
 - C^{∞} continuity
 - Editing with control points (with interior control)
 - No additional artificial curves





Concave surface representations

- Loop and DeRose (1989), Smith and Schaefer (2015)
 - S-patches multivariate Bézier patches
 - Beautiful theory
 - Difficult to use
- Kato (1991, 2000)
 - Transfinite surface interpolation
 - Supports holes
 - No internal control
 - Singular blends cause high curvature variation
- Pan et al. (2015), Stanko et al. (2016)
 - Discrete methods minimizing fairness energies
- (See comparisons later)

T. Várady, P. Salvi, Gy. Karikó,

A Multi-sided Bézier Patch with a Simple Control Structure. Computer Graphics Forum, Vol. 35(2), pp. 307-317, 2016.

T. Várady, P. Salvi, I. Kovács,

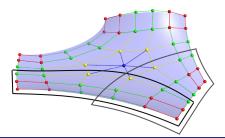
Enhancement of a multi-sided Bézier surface representation. Computer Aided Geometric Design, Vol. 55, pp. 69-83, 2017.

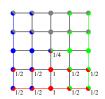
Control net derivation from the quadrilateral case

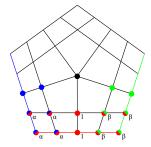
- Control grid $\rightarrow n$ ribbons
- Degree: d, Layers: $I = \left\lceil \frac{d}{2} \right\rceil$
- Control points: $C_{j,k}^i$

•
$$i \in [1..n], j \in [0..d], k \in [0..l-1]$$

• Weighting functions: $\mu_{i,k}^i$

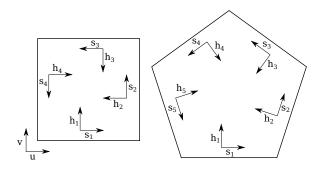






Domain

- Regular domain in the (u, v) plane
- Side-based local parameterization functions s_i and h_i
 - Based on Wachspress barycentric coordinates $\lambda_i(u, v)$



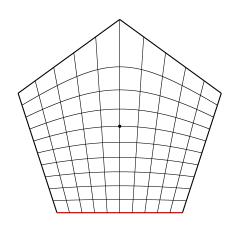
Local parameters

•
$$s_i = \frac{\lambda_i}{\lambda_{i-1} + \lambda_i}$$

•
$$h_i = 1 - \lambda_{i-1} - \lambda_i$$

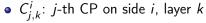
Barycentric coordinates λ_i

- $\lambda_i \geq 0$ [positivity]
- $\sum_{i=1}^{n} \lambda_i = 1$ [partition of unity]
- $\sum_{i=1}^{n} \lambda_i(u, v) \cdot P_i = (u, v)$ [reproduction]
- $\lambda_i(P_j) = \delta_{ij}$ [Lagrange property]

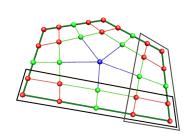


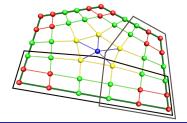
Half-Bézier ribbons

$$R_{i}(s_{i}, h_{i}) = \sum_{j=0}^{d} \sum_{k=0}^{l-1} C_{j,k}^{i} \cdot \mu_{j,k}^{i} B_{j,k}^{i}(s_{i}, h_{i})$$



- $B_{j,k}^i(s_i, h_i) = B_j^d(s_i) \cdot B_k^d(h_i)$ bivariate Bernstein polynomials
- $\mu_{j,k}^i$ rational function of h_i , $h_{i\pm 1}$
 - 1 on side i, 0 on the others
- The surface interpolates the ribbons at the boundary (G^1/G^2)





Central weight & patch equation

- Weights do not add up to 1
- Deficiency ⇒ weight of the central control point:

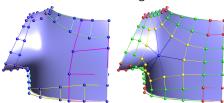
$$B_0(u, v) = 1 - \sum_{i=1}^n \sum_{j=0}^d \sum_{k=0}^{l-1} \mu_{j,k}^i B_{j,k}^i(s_i, h_i)$$

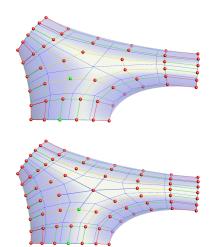
Patch equation:

$$S(u, v) = \sum_{i=1}^{n} R_i(s_i, h_i) + C_0 B_0(u, v)$$

Degree elevation

- Linear and bilinear combinations
- Modifies the surface interior
- Control net generated by reductions and elevations
 - Default positions
 - Merging Bézier ribbons of different degrees



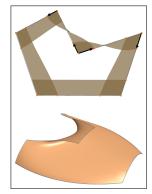


Concave GB patch

Problem: ribbon orientation

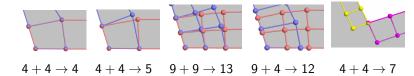
Convex case: prev. tangent \rightarrow next tangent

- Does not work for the concave case
- Interpolants should point towards the interior of the surface
- Control point placement?



Independent ribbons

- Original constraints of the GB patch:
 - Common d degree, same $I = \lceil d/2 \rceil$ number of layers
 - Corresponding control points of adjacent ribbons are identical
- These can be lifted! ⇒ Ribbons become independent entities
- ullet $\mu^i_{j,k}$ weight function *still* ensures the interpolating property
- Local d_i and l_i values for each ribbon
- Various possible configurations:



Ribbons

$$R_i(s_i, h_i) = \sum_{j=0}^{d_i} \sum_{k=0}^{l_i-1} C_{j,k}^i \cdot \mu_{j,k}^i B_{j,k}^i(s_i, h_i)$$

- $(d_i + 1) \times l_i$ control points
- Degrees:
 - d; (edgewise)
 - $2l_i 1$ (cross-boundary)
- Degree elevation:
 - Independently in the two parametric directions
 - Adding a layer increases the degree by 2

Blending functions

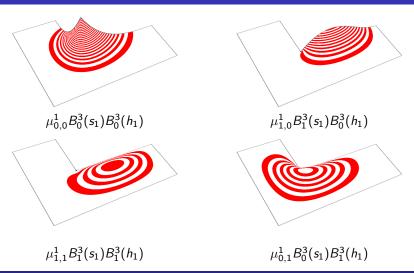
• Blend of $C_{j,k}^i$ is $\mu_{j,k}^i B_{j,k}^i(s_i,h_i)$, where

$$B_{j,k}^{i}(s_{i}, h_{i}) = B_{j}^{d_{i}}(s_{i}) \cdot B_{k}^{2l_{i}-1}(h_{i})$$

$$\mu_{j,k}^{i} = \begin{cases} \alpha_{i} = h_{i-1}^{2} / \left(h_{i-1}^{2} + h_{i}^{2}\right), & \text{when } 2j < d \\ 1, & \text{when } 2j = d \\ \beta_{i} = h_{i+1}^{2} / \left(h_{i+1}^{2} + h_{i}^{2}\right), & \text{when } 2j > d \end{cases}$$

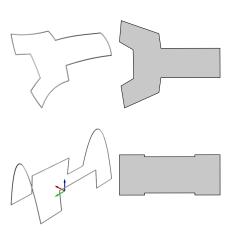
- No central control point
 ⇒ weight deficiency solved by normalization:
 - $S(u,v) = \frac{1}{B_{\text{sum}}(u,v)} \cdot \sum_{i=1}^{n} R_i(s_i,h_i)$

Blending function examples



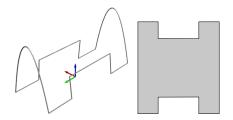
Domain generation – projection

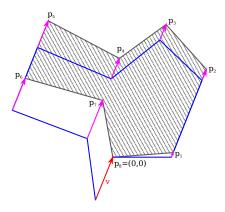
- Project vertices on a best fit plane
- Simple
- Works well on:
 - Relatively flat objects
- Fails for:
 - Highly curved models
- Goals:
 - Preserve angles
 - Preserve arc lengths



Domain generation – heuristic algorithm

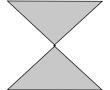
- Normalize the angles
- Draw an open polygon
- Distribute the deviation
 - Proportionally to edges
- Better results:





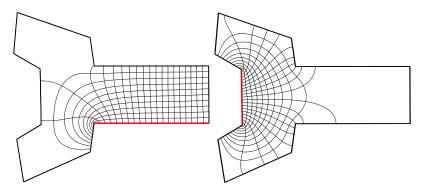
Domain generation – validation

- The domain may have self-intersections / bottlenecks
- Minimum segment-segment distance parameter
 - E.g. 10% of the MBR axis
- Enlarge all convex angles
 - Enlargement factor (e.g. 1.1)
 - Distribute the surplus among the concave angles
- Iterate until the domain becomes valid



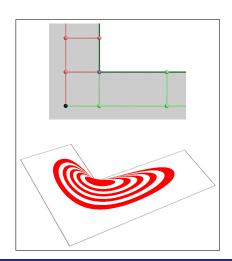
Parameterization

• Based on harmonic coordinates (computed discretely)

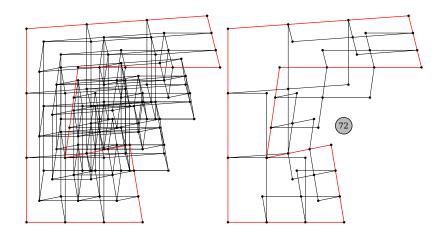


Editing with additional control points

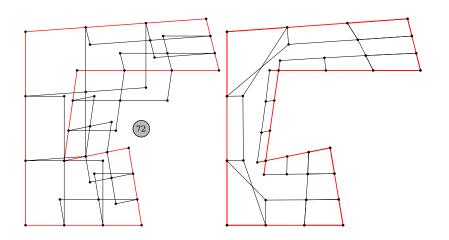
- "Hollow" areas of low weight
 - Concave corners
 - Areas far from boundaries
- Concave corner blend:
 - using $B_1^{2l_i-1}(h_i)$ weights
- 2 Central blend:
 - $\prod_i h_i^2$ (scaled)



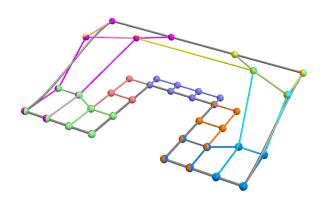
S-patch control net (full, "ribbons")



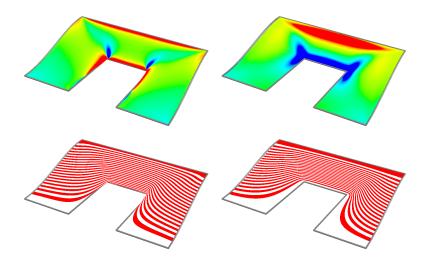
S-patch vs. GB patch ribbons



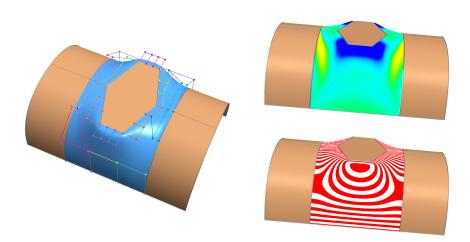
Test object #2



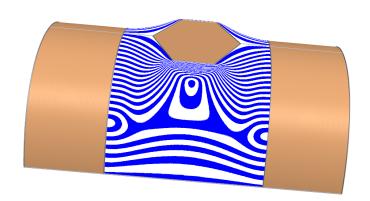
Kato's transfinite patch vs. GB (mean curvature, contours)



Test object #3 (mean curvature, contours)

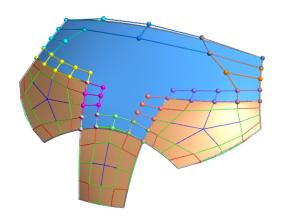


Test object #3 (isophotes)

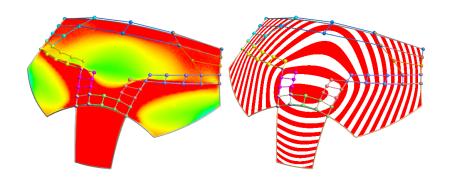


Editing with the central control point (contours)

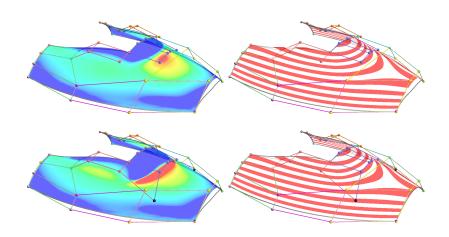
Network of patches (control networks)



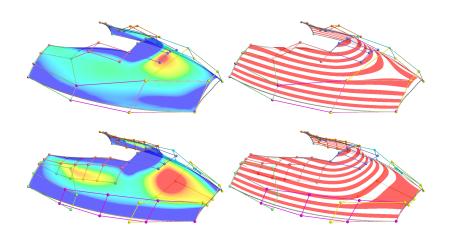
Network of patches (mean curvature, contours)



Editing – corner CPs (mean curvature, contours)



Editing – degree elevation (mean curvature, contours)



вме

Conclusion

Extension of Generalized Bézier patches

- Implicit assumptions lifted
 - Independent degrees / control points
- New ribbons & blending weights
- Concave domain generation & parameterization
- Additional control points

Future work

- Interior control
 - How to add more control points?
 - How to define good blending functions?
- Alternative parameterization?

Thank you for your attention.

