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Abstract

In curve network-based design, objects consist of a collection of smoothly connected
multi-sided patches. Trans�nite surface interpolation is a favorable representation; these
patches are determined exclusively by means of n boundary ribbon surfaces carrying
positional and cross-derivative constraints to be interpolated. Interest in trans�nite in-
terpolation has been recently revitalized by new schemes to generalize Coons' four-sided
patch to arbitrary n sides. While the majority of multi-sided surfaces are de�ned over
convex domains combining linear ribbons, there are design situations, where applying
convex domains is insu�cient or impossible. The goal of our paper is to process curve
networks with concave angles and internal holes. In the proposed scheme, subdividing
curves are supplemented and parabolic ribbons are used to provide G2 continuity. Gre-
gory's generalized correction terms are applied to handle ribbons that are not compatible
at the vertices. A simple construction to create parabolic ribbons is also discussed. A few
examples illustrate the di�culties and the solutions.

1. Introduction

In curve network-based design, objects are directly de�ned by a collection of curves, ar-
ranged into a single 3D network with general topology. Curves may come from (i) sketch
input, (ii) feature curves extracted from orthogonal views, (iii) curves traced on triangular
meshes or (iv) direct 3D editing. It is assumed that the network automatically determines
so-called ribbon surfaces that carry positional and cross-derivative constraints to be in-
terpolated. The key to curve network-based design is trans�nite surface interpolation,
where no grid of control points is needed to de�ne the shape interior, and all n bound-
aries are handled uniformly, unlike in the case of trimmed quadrilateral surfaces. The
ability to naturally edit prescribed boundaries and cross-derivatives is also an advantage
in contrast to recursive subdivision schemes.
The majority of multi-sided trans�nite surfaces are de�ned over convex domains, com-

bining linear ribbon surfaces and enabling G1 continuity between the adjacent patches.
At the same time, there are many practical design situations, where this approach may
not work. In these cases additional curves need to be supplemented, which must be
compatible with the already existing ribbons, and thus the extended network becomes
suitable for applying convex methods. Typical examples include cases when two curves
span a concave angle at a common vertex, or when disjoint loops with prescribed slopes
need to be interpolated. It is particularly important to produce seamless connections
within this sort of composite surfaces; this motivated our work to introduce parabolic
ribbons for ensuring G2 continuity.
The roots of trans�nite surface interpolation go back to Coons' classical work [3], that
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generalizes for C2, as well. Potential incompatibilities of adjacent ribbons meeting at
a corner were also investigated. This problem can be resolved using Gregory's rational
terms [6], which was later generalized to handle C2 incompatible corners [1, 25]. Research
related to non-four-sided trans�nite schemes intensi�ed in the eighties and the early
nineties including various important publications [2, 17, 9, 16, 18, 11]. Multi-sided patches
with G2 continuity were also published, see [7, 8, 5] amongst others. Serious e�orts were
directed towards avoiding rational terms, when quadrilateral polynomial surfaces must
satisfy compatibility constraints at n-valent vertices [14, 15]. As it will be discussed in
Section 3, this question is also related to trans�nite surface interpolation, as it determines
whether ribbons are entirely unconstrained, or need to be made compatible through a set
of algebraic equations. In the unconstrained case it is necessary to use rational correction
terms.
An early paper on curvenet-based surfaces was published by [12]. A global fairness func-

tional using the variation of curvature was proposed, yielding a surface model comprised
of quadrilaterals (biquintic Bézier patches). Subdivision-based interpolation approaches
have also been proposed, using extensions of the Catmull-Clark scheme [10, 21]. Recent
advances include Coons patches bounded by geodesic curves [4].
Interest in trans�nite surface interpolation has been revitalized recently by the current

authors, proposing two new, multi-sided patch schemes [23, 19, 20]. This paper describes
one of them, the so-called Generalized Coons (GC) surface, which expands the classical
Boolean sum logic for n sides. In Section 2, three examples of speci�c curvenet con�g-
urations are presented, where ordinary trans�nite interpolation would fail. In Section
3, we show how new interior curves can be added, and discuss the construction of G2-
continuous parabolic ribbons. In Section 4, we present the basic principle of the n-sided
Coons approach, and discuss methods for constructing non-regular domains, blending
functions, and ribbon parameterization. The computation of Gregory-style correction
terms to blend independent linear and parabolic ribbons will also be described. Finally,
we analyze the constructed composite trans�nite patches, and discuss open problems for
future research.

2. Motivation

We assume that there is a given network of free-form curves, represented by markers
interpolated by B-splines. Based on the network, common tangent planes (and possibly
best-�t surface curvatures, see [22]) are computed at the vertices, and bi-parametric rib-
bon interpolants are de�ned, that carry positional and cross-derivative information. A
pair of linear ribbons, being on the opposite sides of a boundary, will satisfy G1 conti-
nuity, if they share a common normal at each point of the boundary (e.g. using rotation
minimizing frame, see [24]). A pair of parabolic ribbons with the same curvature will
provide G2 continuity across adjacent patches. Finally, multi-sided patches interpolating
the given ribbons will be constructed.

2.1. Three examples

Our �rst case shows a loop of curves, where two consecutive edges span a concave angle
(see Figure 1). Using a convex domain would yield a twisted patch, most likely with self-
intersections, due to the distorted parameterization of the ribbons in the domain space.
This case can be better modeled, if we insert a new edge, that connects the concave
corner with a marker on the opposite boundary, as shown in the �gure. This connecting
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Figure 1: Subdividing a patch due to a concave angle.

(a) Connection curve.

(b) Original mean map. (c) Mean map with interior ribbons.

Figure 2: Subdividing a patch due to poorly distorted domain.

curve is tangential to the plane of the concave corner and tangentially meets the ribbon
at the marker.
The second example is a single patch, where all angles are convex, but the 3D boundary

con�guration signi�cantly deviates from the shape of the 2D domain (see Figure 2). As
a result, the interior of the patch does not produce a shape that meets our expectations.
To overcome this problem, an arti�cial connecting curve is inserted in the middle, that
tangentially connects the two opposite ribbons of the patch.
The third example shows two disjoint curve loops (see Figure 3) with already de�ned

ribbons, but no appropriate domain exists for surface construction. As before, we insert
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Figure 3: Adding connection curves to connect separate loops of edges.

three connection curves that provide three adjacent loops that now can be interpolated
by multi-sided patches with convex domains.

3. Basic algorithms

This section deals with the heuristics of creating connection curves, as well as the de�-
nition of linear and parabolic ribbons with or without corner compatibility.

3.1. Connection curves

The applied connection curve algorithm can be brie�y described as follows. Assume
that we have two opposite curves from the network, P1(s1) and P2(s2), and their �rst
derivatives and prescribed normal vectors are denoted by Di(si) and Ni(si), respectively,
i ∈ {1, 2}. Let us de�ne a sequence of orthogonal sweeping planes πi(si) for each curve,
which contain the points Pi(si) and whose normal vectors are Di(si). The requested
connection curve K12(t) connects two opposite curve points, and its tangent vectors are
set perpendicular to the given curves, i.e., ∂

∂tK12(0) = ±D1(s1)×N1(s1) and ∂
∂tK12(1) =

±D2(s2)×N2(s2), where the signs are determined by the direction of the curves.
The connection curve may connect two �xed markers, i.e., two of the points de�ning

the B-splines curves; then s1 and s2 are uniquely de�ned. Alternatively, the two end
positions of the connecting curve are only loosely de�ned by user-de�ned sliding markers
on the curves. In this case, the best end positions can be computed by a simple iterative
algorithm. Substituting point P2(s2) into the plane π1(s1) gives a signed distance, that
indicates the direction in which the �rst sliding marker and its plane should move on the
�rst curve to contain the second point on the other side; this produces an enhanced s(1)1

value. Similarly, substituting point P1(s1) into the plane π2(s2) enhances the position
of the sliding marker on the second curve. So we set point P2(s2) to lie in π1(s1), and
vice versa. This iteration may not converge; in this case, we keep the initial positions. A
simple example in Figure 4 shows how the sliding markers move to their �nal position
after a few steps.

3.2. Ribbons

Linear ribbons are de�ned as R(s, d) = P (s) + dT (s), where T (s) is the cross-derivative;
we assume that the functions P (s) and T (s) are given. Two linear ribbons enable G1

continuity between two trans�nite patches, if their normal vectors are parallel, i.e.,
∂
∂s1

P1(s1) × T1(s1) ‖ ∂
∂s2

P2(s2) × T2(s2) for each P1(s1) = P2(s2) point of the com-
mon boundary curve.
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Figure 4: Sliding markers of a connection curve from initial to �nal positions.

Parabolic ribbons need a smooth second derivative function C(s), as well:

R(s, d) = P (s) + dT (s) +
1
2
d2C(s), (3.1)

where we assume that both the position P (s) and the derivative vectors T (s) and C(s)
lie in the sweeping plane π(s). Two parabolic ribbons enable G2 continuity between two
trans�nite patches, if the corresponding parabolic arcs are contained in the same sweeping
plane, and their normal curvature match for each point of the common boundary curve
(due to the well-known Linkage Curve Theorem [13]), i.e., κ1(s1) = κ2(s2) holds for all
s1, s2, where P1(s1) = P2(s2), and

κi(si) =
‖Ti(si)× Ci(si)‖
‖Ti(si)‖3

.

To compute common normal vector functions along a curve is relatively easy by in-
terpolating the constrained normal vectors at the vertices of the network, however, to
prescribe a common cross-curvature sweep along a curve is a di�cult problem; poor val-
ues may destroy surface quality in the interior of the patches. In order to be on the safe
side, we propose to compute parabolic ribbons by �rst creating G1 trans�nite patches,
then computing local curvatures along the common boundary in given sweeping planes,
and set a common target curvature as the average of the two opposite curvature values.
We can transform the parabolic arc into a local coordinate system, where the �rst point

is the origin, and the tangent of the arc is the local x-axis. Then at a given boundary
point the equation of a parabola can be written as a quadratic Bézier curve R∗(d) =
2(1 − d)d(αl, 0) + d2(l, h), yielding κ = h

2α2l2 (see Figure 5). Assuming that the width
of the parabolic ribbon is the same as the corresponding linear one, l is already de�ned.
Then the prescribed curvature κ can be set by means of α and h, which de�ne the second
and third control points of the parabolic arc. Transforming these points back into the 3D
space de�nes the parabolic ribbon R(s, d) at those positions.

3.3. Ribbon compatibility at the corners

In the previous paragraphs we have dealt with opposite ribbons sharing a common curve,
now we look at two adjacent ribbons sharing a common vertex. As noted earlier, in order
to obtain a valid trans�nite patch, the ribbons must satisfy certain constraints, or must
be made compatible. Let us denote the trans�nite patch by S(u, v), where (u, v) are the
local parameters of the patch, and S(0, 0) is a corner point. Let us assume that we have
two parabolic ribbons here, denoted by U(u, v) and V (u, v), parameterized in accordance
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(0,0) (αl,0)

(l,h)

Figure 5: Setting the control points of a parabolic ribbon.

with S(u, v). Let us assign U(u, 0) to S(u, 0), and V (0, v) to S(0, v). There are three basic
cases:
(a) The ribbons are compatible, thus the trans�nite patch equation is well-de�ned, all

derivatives and mixed partial derivatives ∂
∂u ,

∂
∂v ,

∂2

∂u∂v ,
∂2

∂u2 , ∂2

∂v2 ,
∂3

∂u2∂v ,
∂3

∂u∂v2 ,
∂4

∂u2∂v2 of
U and V are equal at (0, 0). This means that the ribbons must satisfy a set of algebraic
constraints [15]. To produce such compatible ribbons automatically from a given curve
network is a hard task.
(b) Another case is when the ribbons are totally independent, and the only constraint

is that the corner point at S(0, 0) is common. In this case we may have two di�erent
values for all the above derivatives, and in order to create a valid trans�nite patch,
we need to apply the Gregory-style correction terms ∂i+j

∂ui∂vj S(0, 0) = Wi,j(u, v), where
Wi,j(u, v) is a rational function combining ∂i+j

∂ui∂vjU(0, 0) and ∂i+j

∂ui∂vj V (0, 0). (For details,
see Section 4.4.)
(c) There exists a third case, which we call a hybrid solution. It is well-known, that

if all curves match an associated surface curvature computed at a given vertex, this
provides a su�cient condition to set compatible twists by means of a relatively easy local
constraint. In this case the ∂

∂u ,
∂
∂v ,

∂2

∂u∂v ,
∂2

∂u2 , ∂2

∂v2 derivatives of U and V are identical,

and only the remaining three terms ∂3

∂u2∂v ,
∂3

∂u∂v2 ,
∂4

∂u2∂v2 must be computed by Gregory's
correction.
In the next section we will describe how generalized Coons patches work. We will assume
that the parabolic ribbons are independent. This helps optimizing ribbons without a
highly complex algebraic system of equations, and it also facilitates interactive editing
of trans�nite patches.

4. Generalized Coons patches

The basic idea of Generalized Coons (GC) patches were �rst introduced in [23]. The neces-
sary conditions for C1 continuity, together with new, e�cient parameterization schemes
were elaborated in [19]. In this section, we recall important elements from the former
publication, and also discuss some of the new enhancements. The original GC surfaces
interpolated linear ribbons only; the scheme presented here further generalizes it to han-
dling parabolic ribbons, as well.
Let Pi(si), Ti(si), Ci(si), 1 ≤ i ≤ n (n ≥ 3) denote the position, �rst cross-derivative,

and second cross-derivative of the boundaries, respectively. A quadrilateral ribbon surface
can be written as

Ri(si, di) = Pi(si) + γ(di)Ti(si) + δ(di)Ci(si),

where γ and δ are rational reparameterization functions, and di is the distance parameter

(as opposed to si, the side parameter). This is a more complex equation than the previous
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Figure 6: Schematic representation of two ribbon, and two corner interpolants.

one given in Equation (3.1). We were motivated to use these terms to obtain a multi-sided
surface that matches the 4-sided C2 Coons patch with the same ribbons; without these
functions, the shape of the 4-sided GC would be a di�erent patch with a much stronger
fullness. The functions γ(d) and δ(d) can be derived in a straightforward manner from
the quintic Hermite functions:

γ(d) =
H5

1 (d)
H5

0 (d)
=

3d2 + d

6d2 + 3d+ 1
, δ(d) =

H5
2 (d)

H5
0 (d)

=
d2

12d2 + 6d+ 2
,

where H5
0 (d) = 1− 10d3 + 15d4 − 6d5, H5

1 (d) = d− 6d3 + 8d4 − 3d5, and H5
2 (d) = 1

2d
2 −

3
2d

3 + 3
2d

4 − 1
2d

5 are the quintic Hermite blending functions. These reparameterization
functions satisfy the following requirements: γ(0) = γ′′(0) = δ(0) = δ′(0) = 0, and
γ′(0) = δ′′(0) = 1.
We assume that the patch is de�ned over a convex polygonal domain Γ in the (u, v)

parameter plane, and the sides of the polygon Γi are mapped to the boundaries of the
patch. The local side and distance parameters of the ribbons are computed from (u, v),
i.e., si = si(u, v), and di = di(u, v).
Following the idea of the Coons patch, the GC patch is also a Boolean sum of ribbons

and correction surfaces, weighted by appropriate blending functions Bi (for sides) and
Bi,i−1 (for corners):

S(u, v) =
n∑
i=1

Ri(si, di) ·Bi(d1, . . . , dn)−
n∑
i=1

Qi,i−1(si, si−1) ·Bi,i−1(d1, . . . , dn),

where Qi,i−1(si, si−1), 1 ≤ i ≤ n are correction patches. The basic idea is illustrated
in Figure 6. Loosely speaking, the i-th ribbon interpolant, multiplied with its blend
function, reproduces the prescribed boundary data (black area), and creates super�uous
components (grey areas) along its adjacent sides i − 1 and i + 1. A corner interpolant,
multiplied by its blend function, is to compensate the super�uous components (the grey
areas) coming from the (i − 1)-th and i-th ribbons, therefore in the end the patch will
interpolate the boundary functions, as expected.
For creating a GC patch, the following constituents must be provided: (i) n ribbon sur-

faces, (ii) an n-sided domain polygon, (iii) blending functions, (iv) appropriate methods
to parameterize the ribbons, and (v) n correction patches. We have already dealt with
the creation of parabolic ribbons; all the other constituents will be explained brie�y in
the rest of this section.

4.1. Domain polygon

It is a widely accepted principle in CAGD, that the parameterization of the domain and
the mapped 3D objects should have a �similar� shape. In other words, the domain should
be mapped into 3D with minimal distortion. For example, non-uniform B-splines are
de�ned in this fashion, thus avoiding undesirable overshoots.
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Denote the arc lengths of the given three-dimensional boundary curves by Li, and the
angles between the end tangents of the (i − 1)-th and i-th boundaries by φi. Denote
the side lengths and the angles of the domain by li and αi, respectively, then we seek
to minimize the squared deviation of the chord lengths and the angles, i.e.,

∑
i(li −

clengthLi)2 +
∑
i(αi − cangleφi)2, where clength and cangle are properly chosen constants.

This is a non-linear expression, but practice shows that simple heuristic methods �
such as circular polygonal domains or edge tweaking � can yield reasonable solutions,
see details in [23]. The above minimization error characterizes the extent of domain
distortion, thus it gives a hint about whether splitting the domain is likely to improve
the shape (see the second example in Section 2).

4.2. Blending functions

The blending functions need to satisfy special interpolating properties. For each (u, v)
point we determine n distance values di (1 ≤ i ≤ n). Each di is associated with the
i-th side: di is equal to 0 on side Γi, and it increases monotonically as we move away
from Γi. In our patch formulations, distance-based rational blending functions are used
to combine ribbons:

Bi,i−1(d1, . . . , dn) =
Di,i−1∑
j Dj,j−1

, Di,i−1 =
∏

j /∈{i,i−1}

d3
j ,

Bi(d1, . . . , dn) = Bi,i−1(d1, . . . , dn) +Bi+1,i(d1, . . . , dn).

The original G1 patch contained quadratic distance terms, here cubic terms are needed
for G2 interpolation. It is easy to see, that Bi is equal to 1 on Γi, and vanishes on all
non-adjacent sides Γj , where j /∈ {i− 1, i, i+ 1}. Due to the cubic terms, the related �rst
and second partial derivatives of the blending functions vanish, i.e.,

∂

∂dk
Bi(d1, . . . , dj = 0, . . . , dn) = 0, j /∈ {i− 1, i+ 1}, k, l ∈ [1 . . . n]

∂2

∂dk∂dl
Bi(d1, . . . , dj = 0, . . . , dn) = 0.

4.3. Parameterization

The most crucial issue in trans�nite surface generation is ribbon parameterization, i.e.,
how to compute the local side and distance parameters (si, di) from a given (u, v) domain
point. It is natural to require that each side parameter sj (j ∈ [1 . . . n]) is linear, and for
a point on Γi:

si ∈ [0, 1], di = 0, si−1 = 1, si+1 = 0. (4.1)

The distance parameters dj (j ∈ [1 . . . n]) also change linearly along the sides, so on the
i-th side

di−1 = si, di+1 = 1− si. (4.2)

The following properties must also be satis�ed for a point on Γi:

∂di−1

∂u
=
∂si
∂u

,
∂di+1

∂u
= −∂si

∂u
,

∂di−1

∂v
=
∂si
∂v

,
∂di+1

∂v
= −∂si

∂v
. (4.3)

Roughly speaking, this means that the adjacent ribbon parameterizatons are identical
in a di�erential sense, see Figure 8.
The following is a brief review of the so-called interconnected parameterization, which
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Figure 7: Constant parameter lines of the interconnected parameterization.

was found superior with respect to computational e�ciency amongst the various ribbon
mapping methods [19].
Take arbitrary functions si(u, v) that give 0 for every point on side Γi−1, and 1 ev-

erywhere on Γi+1. For all other points inside the convex domain they return a value in
[0, 1]. For example, the s coordinates of the bilinear, radial or central line sweeps [23] are
such functions. These naturally satisfy si ∈ [0, 1], si−1 = 1 and si+1 = 0. Let us de�ne
a blending function α(t) : [0, 1] → [0, 1] with α(0) = 1 and α(1) = α′(0) = α′(1) = 0.
Examples include the cubic Hermite blending function, or a rational blend function:

α(t) = (1−t)2
t2+(1−t)2 . Now we can de�ne di by means of si−1 and si+1, as follows:

di(u, v) = (1− si−1(u, v)) · α(si(u, v)) + si+1(u, v) · α(1− si(u, v)).

If we are on the i-th side, si−1 = 1 and si+1 = 0, so di = 0, satisfying (4.1). Straightfor-
ward algebra shows that the requirements (4.2) and (4.3) are also satis�ed. A simpli�ed
view of this construction is that taking a (u, v) point, we determine three consecutive
sweep lines that go through (u, v), and determine di as the weighted combination of
di = si−1 on Γi−1, and di = si+1 on Γi+1, according to the middle coordinate si.

(u,v)

di-1

s i
=

di+1

Γi

Γi+1

Γi-1

Figure 8: Con-
strained parameter-
ization.

Figure 7 shows constant s and d lines for this parameteriza-
tion using the central line sweep parameterization [23] for s. This
method forces the si = 1

2 lines to go through the center of the
domain. The �rst image is based on the right side of the polygon;
the second on the small side at the top-right; and the third on the
top side. Observe that all lines of the second image start in the
same way (in a di�erential sense) as their counterparts in the �rst
and third images.
The above �gures show that the d constant parameter lines may

have in�ections. To avoid this, an enhanced parameterization is
suggested, using the quartic blend functions

β0(t) = (1− t)4 + 4(1− t)3t+ c · 6(1− t)2t2,
β1(t) = c · 6(1− t)2t2 + 4(1− t)t3 + t4,

where c is an appropriate shape parameter. Then we obtain

di(u, v) = (1− si−1) · β0(si) + si+1 · β1(si),

that results in smooth d constant parameter lines, see Figure 9.
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Figure 9: Constant parameter lines of the enhanced interconnected parameterization.

4.4. Correction terms

For G1 and C1 trans�nite interpolation surfaces, it is customary to assume that the
boundary curves are compatible, i.e., ∂

∂si
P (0) = Ti−1(1), etc., and only the twist vectors

di�er. This is resolved by Gregory's rational twists. In our research, we assume that the
boundary curves match only in position, and for all other terms rational expressions are
used. This creates another layer of �exibility for shape optimization.
The correction term for the G2 patch is somewhat complex, comprising nine terms.

For ease of notation, let ti denote 1− si−1. Then

Qi,i−1(si, ti) = Pi(0) + γ(si)W1,0 + γ(ti)W0,1 + γ(si)γ(ti)W1,1

+ δ(si)W2,0 + δ(ti)W0,2 + δ(si)γ(ti)W2,1

+ γ(si)δ(ti)W1,2 + δ(si)δ(ti)W2,2,

where each W is a rational function of si and ti. The computation of these is fairly
straightforward, see [25]. As an illustration, we show two such terms, the remaining ones
are similar:

W1,0(si, ti) =
s2iTi−1(1) + t3i

∂
∂si
Pi(0)

s2i + t3i
,

W1,2(si, ti) =
s2i

∂2

∂t2i
Ti−1(1) + ti

∂
∂si
Ci(0)

s2i + ti
.

Conclusion

In this paper we have dealt with constructions for curve network-based design, where
the initial ribbon information associated with the network is not su�cient to create
trans�nite patches with convex domains. To resolve this problem, additional connection
curves are inserted, that are constrained to be compatible with the existing ribbons.
For trans�nite interpolation, we use a generalization of Coons' Boolean sum patches. In
order to make seamlines practically invisible, parabolic ribbons have been introduced,
thus G2 continuity can be ensured across the boundaries. Figure 10a shows two patches
with linear ribbons; this is the basis of computing an average curvature function along
the boundary (Fig. 10b), which will be converted into parabolic ribbons (Fig. 10c) for
the �nal patch interpolation � see the isophotes in Fig. 10d.
Quality improvement can also be assessed in Figure 11 by analyzing isophote lines.

The �rst one shows a G1 boundary with tangentially discontinuous isophotes, while the
second one shows smooth isophote stripes indicating G2 continuity.



GENERALIZED COONS PATCHES 11

(a) Linear ribbons. (b) Common curvature.

(c) Parabolic ribbons. (d) Isophotes

Figure 10: Test example.

Figure 11: Adjacent patches with G1 vs. G2 continuity.

As it was noted earlier, to prescribe a curvature function based on the curve network
or by user interaction is a delicate issue, and a poor choice may lead to nice connections
along the boundaries, but poor shapes in the interior. There are several open issues in
this area, and averaging the curvatures of the existing G1 patches is only one possible
solution. It was also pointed out, that even when the curvature is well-de�ned, there is
some degree of freedom to construct the parabolic ribbons (see shape parameter α in
Section 3.2); this is also a tool for further shape optimization to be explored.
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