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Abstract

Transfinite surface interpolation is a classic topic of computer-aided geometric design (CAGD) and many non-quadrilateral schemes
are known. Surfaces defined solely by means of their boundary curves and cross-tangent functions are needed, for example, in
three-dimensional curve network-based design, and to fill complex irregular holes such as in vertex blending. This paper deals with
interpolating so-called tangential ribbons. Former schemes are enhanced and extended in order to minimize shape artifacts and to
provide a more natural patch interior. The proposed representation is based on irregular convex domains that correspond to the
lengths and orientations of the boundary curves. The mapping of the individual ribbons within the n-sided domain is calculated
by focused parameterization methods that ensure a balanced orientation related to the center of the domain and avoid parametric
shearing. Distance-based blending functions ensure that modifying or inserting a small edge will have only a local effect over
the n-sided patch. Constructions to create one-sided or two-sided patches are also presented. Examples and open research topics
conclude the paper.
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1. Introduction

A fundamental theme in computer-aided geometric de-
sign (CAGD) is to create mathematical representations for
complex free-form objects, which are composed of several
smoothly connected surface patches. While the majority of
such patches are four-sided, almost all industrial objects
contain general n-sided patches that are inserted into some
arrangement of the quadrilaterals. Most frequently three-,
five-, and six-sided patches are needed; however one-sided
or two-sided patches may also occur in practical design.

There are two important applications of n-sided patches.
The surface may be a relatively large functional part, sat-
isfying aesthetic and/or engineering requirements, where
shape control and fairness are of primary importance. Al-
ternatively, the surface is a relatively small piece to fill holes
or create vertex blends; these are fundamentally defined by
boundary constraints and only natural transition in the in-
terior matters.

Several techniques have been published in the CAGD lit-
erature for creating general topology surfaces [3]. We enu-
merate basic approaches characterizing how boundaries are
defined.

(i) Trim and stitch. In most CAD/CAM systems four-
sided surfaces are created by standard operations (sweep-

ing or lofting, etc.); then non-four-sided pieces are obtained
by removing certain parts using Boolean operations or in-
tersections. The adjacent patches can only be stitched to-
gether with approximate G1 or G2 continuity, within given
tolerances.

(ii) Quadrilaterals. Often only four-sided surfaces are
available, and n-sided pieces must be subdivided into
quadrilaterals. These generally share common internal
boundaries that connect the midpoints of the sides with a
well-chosen center point (central splitting). Picking opti-
mal subdivision curves and providing internal smoothness
are difficult problems. T-splines [25] also belong to this
category, and they represent a promising new approach.

(iii) Polyhedral surfaces. These surfaces are created by
various procedural techniques, where a composite surface is
created by (recursively) subdividing a topologically general
three-dimensional (3D) control polygon. Applying the well-
known recursive subdivision methods or surface splines a
set of smoothly connected quadrilaterals together with n-
sided surface elements is created [3]. This approach may
face difficulties when explicitly prescribed boundaries and
cross-derivative functions need to be interpolated.

(iv) Genuine n-sided patches. In this case we define the
patch by a single equation (or procedure). The tensor prod-
uct schemes will not work for n 6= 4 sides in general. There
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is a wide variety of n-sided patches, where “non-standard”
representations are applied; see below. In transfinite sur-
face interpolation we assume that there are well-defined
boundaries and cross-derivative functions. The boundaries
are parametric curves, but the actual representation has no
significance. We do not want to or cannot provide control
points for the interior, and our interest is to create natural
transitions solely by blending together the given bound-
aries and tangential constraints.

Practical experience shows that classical schemes may
produce unexpected shape artifacts when the boundaries
have uneven lengths or are highly curved. This motivated
our work to enhance existing representational schemes to
provide fair patches even for irregular boundary configura-
tions. After briefly reviewing the n-sided surface literature
(Section 2), we go back to Coons patches and generalize
this approach in three different ways (Section 3). Then var-
ious aspects of patch construction are investigated includ-
ing domain definition, distance-based blending functions
and different local parameterization schemes (Sections 4,
5). Illustrative test examples (Section 6) and suggestions
for future work conclude the paper.

2. Previous Work

Transfinite surface interpolation is a classical area of
CAGD. Its origin goes back to the late 1960s, when Coons
formulated his Boolean sum surface [2]. This was followed
by Gordon’s generalization of interpolating a rectangular
network of curves [7]. In the next two decades, several new
approaches were developed moving first to triangular do-
mains, then later to n-sided domains [3]. In spite of the
important developments it seems that there are only two
comprehensive reviews on n-sided patches [27,18], but these
have become somewhat dated. In this section, we refer only
to a selection of papers, which were found to be the most
pertinent to our current work.

The research on genuine n-sided patches started with the
pioneering work of Gregory and Charrot [1,8]; this was fol-
lowed by a sequence of early contributions by Sabin [21,22],
Storry and Ball [26], Kato [14] and Várady [28]. Later Plow-
man and Charrot tuned Gregory’s patch to meet the re-
quirements for setback vertex blending [20]. Methods differ
in the way how boundary functions are blended together;
for example, Gregory suggested the use of corner inter-
polants, while Kato combined side interpolants to obtain
the final surface. Another aspect is whether additional cor-
rection surfaces are needed or not, as in Coons’ formula-
tion.

A group of important contributions directly produced
control point-based n-sided patches that are insertable into
rectangular Bézier or B-spline curve networks, including
the method of Hosaka and Kimura [12], and the multi-sided
generalization of Bézier and B-spline patches by Loop and
DeRose [16,17]. The necessity of using two-sided patches
was also pointed out in [23].

Concerning the domain of n-sided patches, the majority
of authors use regular n-sided domains; Kato [15] proposed
a concave projectable domain construction. Serious efforts
have been directed to handle internal holes; see [14,24].
The importance of using non-uniform polygonal domains
has turned out to be a crucial quality issue for us, and we
will return to this topic in Section 4. Note that it is not
necessary to have a closed domain in the parameter space:
Gao and Rockwood in [6] suggested a scheme based on a
special assignment between domain curves and 3D feature
curves, which is capable of interpolating these curves in a
fairly general manner.

The most important difference amongst the various
transfinite approaches is the method of creating the local
parameterization and blending functions. One option is to
use dependent local coordinates, i.e. take two variables and
compute the remaining n − 2 parameters from them; see,
for example, [12,21,22]. Another option is to use the so-
called overlap parameterization of 2n variables (see [28]),
where the parameters are constrained only along the sides.
There are several methods in which the local parameters
are computed independently by different geometric pro-
cedures, such as dropping perpendicular distances to the
polygon sides, radial constructions, and line sweeps. These
will be analyzed in detail later; see Section 5.

The degree of continuity between the multi-sided patch
and the adjacent patches can be a crucial issue. The major-
ity of solutions ensure only G1 continuity. Some methods
generalize forG2 in a relatively natural manner [2,14,16,17],
and others apply more complex reparameterization tech-
niques; see, for example, [9,10].

A significant amount of research effort has been directed
recently to explore generalized barycentric coordinates.
The original motivation was to provide an adequate pa-
rameterization for data points within convex and concave
polygonal domains; see papers on mean value coordinates,
including a good list of related references in [4] and [11].
This idea was later generalized for 3D polyhedra, closed
triangular meshes [13] and general polytopes. Main ap-
plications include mesh parameterization, interpolating
discrete data of vector fields, texture mapping, mesh de-
formations, amongst several others. The idea of using gen-
eralized mean value coordinates to interpolate functions
and derivatives has emerged recently in [5] and [19], where
barycentric blending functions are defined by integrals
over arbitrary domains.

In the following sections we will deal with various transfi-
nite schemes defined as the convex combination of individ-
ual parametric surface interpolants. Our focus is to com-
pute non-regular polygonal domains based on a set of given
3D boundary curves.

We investigate how to enhance the constituents of trans-
finite representations focusing on special distance-based
blending functions and new parameterizations.

2



Fig. 1. Schemes for Coons and n-sided patches

3. Coons patches and extensions

First we revisit classic Coons patches, then derive three
generalized patch formulations over n-sided domains.

3.1. Basic scheme

A G1 Coons patch is defined by four given bound-
ary curves S(u, 0), S(u, 1), S(0, v) and S(1, v), and four
cross-derivative functions Sv(u, 0), Sv(u, 1), Su(0, v) and
Su(1, v). These parametric functions determine a four-
sided interpolating surface S(u, v) with a common param-
eterization over the [u, v] unit square. The Coons patch is
the Boolean sum of two side-to-side surfaces and a four-
sided correction patch that eliminates the extra boundary
terms produced by the side interpolants. Using cubic Her-
mite blending functions (α0(u) = 2u3 − 3u2 + 1, α1(u) =
−2u3 + 3u2, β0(u) = u3 − 2u2 + u, β1(u) = u3 − u2) this
can be written as follows:

U =
[
α0(u) β0(u) α1(u) β1(u)

]
,

V =
[
α0(v) β0(v) α1(v) β1(v)

]
,

Su =
[
S(u, 0) Sv(u, 0) S(u, 1) Sv(u, 1)

]
,

Sv =
[
S(0, v) Su(0, v) S(1, v) Su(1, v)

]
,

Suv =


S(0, 0) Su(0, 0) S(1, 0) Su(1, 0)

Sv(0, 0) Suv(0, 0) Sv(1, 0) Suv(1, 0)

S(0, 1) Su(0, 1) S(1, 1) Su(1, 1)

Sv(0, 1) Suv(0, 1) Sv(1, 1) Suv(1, 1)

 ,

S(u, v) = V (Su)T + SvUT − V SuvUT .

The matrices Su and Sv contain the boundary constraints
for the side-to-side interpolants, and matrix Suv contains
position, derivative and mixed derivative (twist) vectors at
the four corners. A schematic figure (Fig. 1a) shows the

Fig. 2. Local coordinates

logic of Coons patches; black ribbons represent positional
and tangent functions to be interpolated, grey ribbons the
extra boundary terms to be eliminated. The Boolean sum
reproduces the prescribed curves and G1 constraints along
the sides of the domain.

Coons patch rearranged. For our forthcoming purposes
a different side-based indexing will be used. We retain the
four-sided domain [u, v] and introduce local side coordi-
nates (si, ri), where si = si(u, v), and ri = 1 − si−1 pa-
rameterizes each side in the reverse direction. Assume a
counterclockwise indexing in a circular manner; in the four-
sided case, s1 = u, r1 = v, s2 = v, r2 = 1 − u, etc., as
shown in Fig. 2.

Accordingly, we use different, side-based notations for
the positional and tangential constraints, Pi(si) and Ti(si),
respectively. Then P1(s1) = S(u, 0), T1(s1) = Sv(u, 0),
P2(s2) = S(1, v), T2(s2) = −Su(1, v), and so on. We will
need to use the mixed partial derivatives Wi(0) at the cor-
ners; they can be derived from the cross-derivative func-
tions Ti. (For the time being, we assume that the twist
vectors of the adjacent ribbons are compatible; otherwise,
Gregory’s correction terms [3] need to be applied.)

We collect the constant vector quantities that belong
to a corner in order to form separate correction terms.
For example, at the second corner P2(0) = P1(1) =
S(1, 0), T2(0) = −Su(1, 0), T ∗2 (0) = T1(1) = Sv(1, 0) and
W2(0) = Suv(1, 0). The notation T ∗i (ri) is used instead of
Ti−1(si−1) to match the corresponding parameter ri. So
we can rewrite the original equation by combining the four
side-interpolants and the four correction terms, as follows:

S(u, v) =
4∑

i=1

[
α0(ri) β0(ri)

]  Pi(si)

Ti(si)

−
4∑

i=1

[
α0(ri) β0(ri)

]  Pi(0) T ∗i (0)

Ti(0) Wi(0)

  α0(si)

β0(si)

 .
Ribbon-based extension. It will be useful to concatenate

the positional and tangential constraints and introduce G1

ribbons defined in the form of

Ri(si, ri) = Pi(si) + riTi(si).

Related correction terms are given as

Qi(si, ri) = Pi(0) + riTi(0) + siT
∗
i (0) + risiWi(0).

Here only a single Hermite blending function α0 associated
with each side is needed to formulate a ribbon-based patch
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(a) Side blending (b) Corner blending (c) Special side blending

Fig. 3. Blending functions with contours

S(u, v) =
4∑

i=1

Ri(si, ri)α0(ri)

−
4∑

i=1

Qi(si, ri)α0(ri)α0(si). (1)

This is not identical to the Coons patch, but it can eas-
ily be shown that the positional and tangential boundary
constraints are satisfied, as expected.

3.2. Blending functions

For n-sided patches, convex polygonal domains in the
(u, v) parameter plane will be used. We are going to intro-
duce general blending functions based on a set of distance
parameters di = di(u, v), which represent some distance
measure from each side of the polygon (Fig. 2). At this
point the only property we use is that di = 0 on side i and
grows in a monotonic way as we move away from this side.

We sum up interpolant surfaces multiplied by blending
functions. Let us evaluate the i-th product at an arbitrary
point of the i-th boundary as a function of di, i.e. Si(di) =
Ri(di)αi(di). In order to interpolate the positional data,
αi(0) must be equal to 1. In order to interpolate the tan-
gential data, ∂Si

∂di
= R′i(di)αi(di) +Ri(di)α′i(di) must yield

only the tangential term on the border, i.e. α′i(0) must be 0.
For G1 continuous cross-derivative constraints, this means
that it is sufficient to use quadratic terms in the blending
functions. As can easily be shown this also guarantees that
the effect of the k 6= i boundaries and their cross-derivative
functions will vanish on the i-th side.

Three different blending functions — side blending λi,
corner blending κi and a special side blending µi — will be
investigated. Let Dn

i1,i2,...,in denote
∏n

i 6=i1,i2,...,in d
2
i .

The side blending functions must be equal to 1 on side
i, and vanish from 1 to 0 along sides i − 1 and i + 1. On
the remaining n− 3 sides (k 6= i− 1, i, i + 1), they should
vanish; see Fig. 3a. This can be achieved by

λi(d1, . . . , dn) =
Dn

i−1,i +Dn
i,i+1∑n

j=1D
n
j−1,j

.

For example, at n = 4, i = 1,:

λ1(d1, d2, d3, d4) =
d2
2d

2
3 + d2

3d
2
4

d2
1d

2
2 + d2

2d
2
3 + d2

3d
2
4 + d2

4d
2
1

,

i.e., if d1 = 0, then λ1 = 1; if d3 = 0, then λ1 = 0; and if d4

or d2 is equal to 0 at d1 = d3, then λ1 = 0.5.
For this set of blending functions

∑n
i λi = 2, which will

be compensated by the corner blending functions (see be-
low).

The corner blending functions are equal to 1 at corner
i and vanish from 1 to 0 along sides i− 1 and i. On the
remaining n− 2 sides they must be 0 (see Fig. 3b):

κi(d1, . . . , dn) =
Dn

i−1,i∑n
j=1D

n
j−1,j

.

For example, at n = 4, i = 1,:

κ1(d1, d2, d3, d4) =
d2
2d

2
3

d2
1d

2
2 + d2

2d
2
3 + d2

3d
2
4 + d2

4d
2
1

,

i.e., if d4 = 0 and d1 = 0, then κ1 = 1; if d2 = 0 or d3 = 0,
then κ1 = 0; and if d1 = 0 and d4 = d2, then κi = 0.5.

The κi blending functions have the partition of unity
property. Note that squared terms of generalized barycen-
tric coordinates [11] may also produce corner blending func-
tions with similar properties.

The special side blending functions are equal to 1 along
side i, and 0 for all the remaining n− 1 sides where k 6= i:

µi(d1, . . . , dn) =
Dn

i∑n
j=1D

n
j

.

This blending function is singular at the corner points; for
example, there is a jump between µ1(0, d2, . . . , dn−1, ε) =
1 and µ1(ε, d2, . . . , dn−1, 0) = 0. This singularity vanishes
when two adjacent blending functions are added at a given
corner:
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(a) Ribbons for 5 sides (b) Direct generalization (c) Corner interpolants (d) Ribbon interpolants

Fig. 4. Three basic approaches

lim
di−1→0,

di→0

µi−1(d1, d2, . . . , dn) + µi(d1, d2, . . . , dn) = 1.

Thus, for all domain points the µi blending functions also
have the partition of unity property. The blending functions
are depicted in Fig. 3c. For example, at n = 4, i = 1,:

µ1(d1, d2, d3, d4) =
d2
2d

2
3d

2
4

d2
1d

2
2d

2
3 + d2

2d
2
3d

2
4 + d2

3d
2
4d

2
1 + d2

4d
2
1d

2
2

,

i.e., if d1 = 0, then µ1 = 1; if d2 = 0 or d3 = 0 or d4 = 0,
then µ1 = 0.

Keep in mind that all side and distance parameters
(si, di) depend on the domain parameters (u, v) and the
actual properties of the patch will be determined by the
blending functions and the local parameterization of the
ribbons.

3.3. Three approaches

Direct generalization of Coons patches. The genuine gen-
eralization of Coons’ method is to take formula 1, run the
index from 1 to n and apply the side and corner blending
functions to merge the ribbon and correction patches; i.e.,

S(u, v) =
n∑

i=1

Ri(si, di)λi(d1, . . . , dn)

−
n∑

i=1

Qi(si, ri)κi(d1, . . . , dn).

To our best knowledge this direct formula has not been
proposed earlier, possibly due to the difficulties of finding
appropriate common parameterizations. The scheme is de-
picted as in Fig. 1b: the ribbons interpolate the i-th side
and their effect gradually vanishes along the (i− 1)-th and
(i + 1)-th sides due to the blending functions. The super-
fluous boundary data are eliminated by the i-th and the
(i+ 1)-th correction patches yielding a correct G1 interpo-
lation.

Combining corner interpolants. Gregory, Charrot and
Plowman [1,20] suggested applying local corner inter-
polants, each created by two adjacent boundaries and
cross-derivative functions. It is possible to incorporate the
previous correction terms into the corner interpolant, and
then only corner-type blending functions need to be used:

Ci(si, ri) = P ∗i−1(ri) + Pi(si) + siT
∗
i−1(ri) + riTi(si)

−Qi(si, ri)

S(u, v) =
n∑

i=1

Ci(si, ri)κi(d1, . . . , dn).

This scheme is shown in Fig. 1c. The weighted corner
interpolants gradually vanish as they reach the adjacent
corners, and the blending functions and the corresponding
parameterization ensure that the boundary constraints are
reproduced along the sides.

Combining ribbon interpolants. It is also possible to cre-
ate ribbon-based patches without correction terms using a
special type of side blending that avoids producing extra
boundary data to be eliminated. A similar solution was sug-
gested by Kato [14] amongst others. In this case only the
ribbons are weighted, and a special convex combination is
applied:

S(u, v) =
n∑

i=1

Ri(si, di)µi(d1, . . . , dn).

This scheme is depicted as in Fig. 1d.
Fig. 4 shows three transfinite patches using the same rib-

bon input. As the contour lines show, it is not easy to distin-
guish by shape, and different applications may set different
priorities to select the most favorable. In the following sec-
tions, we will focus on other aspects, in particular domain
and parameterization, which have significant influence in
creating nice n-sided patches.
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(a) Regular domain

(b) Proportional domain

Fig. 5. Six-sided patch with “spider” lines

4. Domain polygons

Our goal is to determine an appropriate non-regular
convex domain, based on the given loop of 3D bound-
ary curves. The use of non-regular polygons is needed for
quality purposes, since domain parameterization should
“mimic” the shape of the n-sided patch. It is similar to
using non-uniform parameters for B-spline curves and sur-
faces. An “evenly” located set of constant parameter lines
in the domain should be mapped roughly into an “evenly”
distributed set of curves on the 3D surface.

We have found that when boundaries of different lengths
are used with a regular domain polygon, a strong distor-
tion of the parameterization may occur leading to undesir-
able shape artifacts. In Fig. 5, we show spider-net curves,
i.e. constant parameter lines parallel to the domain sides;
observe the difference between the parameterization of the
regular and non-regular domains. Another example com-
paring mean curvature maps will be shown later in Fig. 17.

Let Ω denote the convex domain in the (u, v) plane, and
Γ its boundary. pi = (ui, vi), i = 1, . . . , n are the vertices
of the polygon to be determined. Index i runs in a coun-
terclockwise order (Fig. 6). Denote the arc lengths of the
given 3D boundary curves by Li, and the angles between
the end tangents of the (i − 1)-th and i-th boundaries by
φi. We would like to compute a convex domain “similar”
to the 3D configuration. Denoting the sides and the angles
of the domain by li and αi, respectively, we seek to min-
imize the squared deviation of the chord lengths and the

Fig. 6. Circular polygonal domain I.

angles, i.e.,
∑

(li − clengthLi)2 +
∑

(αi − cangleφi)2, where
clength and cangle are properly chosen constants. This is a
non-linear problem, but simple heuristic methods are pro-
posed that work well in practice.

(i) The simplest is to place domain vertices proportion-
ally by arc length on the perimeter of a unit circle (inscribed
polygon). Place the first vertex on the u axis, and the sub-
sequent ones (i = 2, . . . , n− 1) at angle

βi = 2π ·
∑i−1

k=1 Lk∑n
k=1 Lk

(see Fig. 6).
(ii) For a better solution, instead of central angles, make

the sides of the polygon proportional to the arc lengths
of the boundaries. As Fig. 7 shows, two cases need to be
distinguished: in case A, the center point of the circle is
contained in the convex hull (Fig. 7a), while, in case B, it
lies outside (Fig. 7b).

Now, take a sufficiently large circle with radius R, and
place the chords Li onto the circle one by one, placing an
endpoint of the largest side (denoted here by L1) onto the
u axis (Fig. 7c). Then start decreasing the radius, and let
the chord endpoints slide towards the other end, i.e., p∗1
moves towards p1. In case A, this will be successful when
the central half-angles of the chords satisfy

∑
arccos Li

2R =
π, assuming L1 < 2R; otherwise, at one instant of the
circle shrinking process, 2R becomes equal to L1 without
closing the loop. Then radius R needs to start growing again
(case B) until we find an appropriate configuration where∑n

2 arccos Li

2R is equal to arccos L1
2R . Note that, based on

the given construction, for the existence of such a domain
polygon it is sufficient to have L1 <

∑n
2 Li.

(iii) The third simple heuristic takes into consideration
not only the lengths of the boundaries, but the local 3D
angles φi, as well. First we normalize the angles to satisfy
the necessary angle criterion for the n-sided convex poly-
gon; i.e., let cangle = (n − 2)π/

∑
φi; then αi = cangleφi.

Now take the polygon sides in sequence retaining the an-
gles, which will likely yield an open polyline, having a dif-
ference vector e between the first and the last points. In
order to improve this, we fix the very first point, and mod-
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Fig. 7. Circular polygonal domain II.

Fig. 8. Length-/angle-based convex polygonal domain

ify the subsequent ones sequentially, first by 1
ne, then by

i
ne (Fig. 8). In the closed polygon obtained, both the chord
lengths and the angles are somewhat distorted, but the re-
sult proved to be satisfactory in our experiments.

5. Local parameterization schemes

The essence of all transfinite schemes is parameteriza-
tion. Having a given point in the domain (i) we determine
n corresponding data points on the individual interpolants
and (ii) combine these by corresponding blending functions.
For example, the ribbon mapping (u, v)→ (si, di) produces
local ribbon coordinates to be substituted into Ri(si, di);
and (u, v) → di produces n distance values to compute
the weights of the blending functions µi = µi(d1, . . . , dn).
These mappings are fundamental in defining the shape of
the patch and the differential properties along the sides.

In this section the subject of our investigation is how
to calculate these local coordinates, and, as will be shown,
there is a wide variety of algorithms to do this. Simple
methods of calculating distance parameters include perpen-
dicular projection, where we take a (u, v) pair, and drop
a perpendicular line to each side. Alternatively, side-based
barycentric coordinates can be defined that divide the area
of the triangle [(u, v), pi, pi+1] by that of the whole poly-
gon; then this value is normalized by a constant n/2 to ob-
tain di. Another measure — chord-based coordinates — was
suggested by Kato [15]. Its main advantage is that it can
be used for domains with internal hole loops and concave
corners as well. Take the chords that connect the domain
point with the corners of the i-th side; then

di = |(u, v)− pi|+ |(u, v)− pi+1| − |pi+1 − pi|.

Distance parameters may be inadequate to determine the
related side parameters. For example, in the perpendicu-
lar method the footpoint may fall beyond the actual side,
so it is not a good way to define si. Kato proposed si =
di−1/(di−1 + di+1), which guarantees that si will be in the
[0, 1] interval. However, this will not yield a linear mapping
for si. For example, the parametric midpoint is not neces-
sarily identical to the midpoint of the chord, in which case
further reparameterization is needed.

The (si, di) parameters can be determined by so-called
line-sweep constructions as well, as described below.

Radial distance functions were suggested by Charrot and
Gregory [1], and these also work for non-regular domains.
As shown in Fig. 9, the extended sides Γi−1 and Γi+1 in-
tersect at point ci. A line sweep connecting ci and (u, v)
intersects side i at point ei, then di = |(u, v)− ei| and si =
|ei − pi|.

We propose another method, called central line sweep, to
create sweeping lines that run from the left edge Γi−1 to the
right edge Γi+1 in a different way than the radial projector.
As shown later, this helps to avoid skewed parameteriza-
tions by forcing the middle line of a ribbon to be mapped
onto a line that connects the midpoint of side i and the cen-
ter point of the domain c = (cu, cv); see Fig. 10. c might be
calculated as the average of the corners, but practice shows
that for non-regular domains a weighted average of chord
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Fig. 9. Computing the radial parameterization.

Fig. 10. Computing the central line sweep parameterization

lengths works better:

c =
0.5

∑
i pi(li−1 + li)∑

i pili
.

Our goal is to find a parameterizing function r(s, d) for
which the s = 0.5 constant parameter line contains the cen-
ter point of the polygon, i.e., for some unknown dc param-
eter value r(0.5, dc) = c. We deal with the local parameters
of side 1. For simplicity’s sake, let us position corner p1 at
the origin, and place p2 on the u-axis. A linear by quadratic
map is introduced:

r(s, d) = p2s+ [w1(1− s)2 + 2w12(1− s)s+ w2s
2]d, (2)

where vectors w1, w12, w2 define the direction of the sweep.
Not only is the parameter value (dc) unknown, but the vec-
tor w12 = (wu

12, w
v
12), as well. To simplify our calculation,

we require that wv
12 = 0.5(wv

1 + wv
2). On the halving line s

is 0.5, so at the center

cv = 0.25[wv
1 + 2wv

12 + wv
2 ]dc,

and thus dc = 2cv/(wv
1 + wv

2). From the other coordinate
equation

cu = pu
20.5 + 0.25[wu

1 + 2wu
12 + wu

2 ]dc,

so we can express the missing u component of w12. Hav-
ing the three direction vectors defined, we can determine
(s0, d0) for any domain point (u0, v0). Express d0 from Eq.

2; then, then after solving a quadratic equation for s0 we
obtain the requested local coordinates:

d0 =
u0 − pu

2s0
wu

1 (1− s0)2 + 2wu
12(1− s0)s0 + wu

2 s
2
0

=
v0

wv
1(1− s0) + wv

2s
.

If needed, one can reparameterize (s, d)→ (s, t) to force
the center point of the ribbon on its middle line to cor-
respond to the center of the domain. In this case, t =
[(1−s)2 +21−dc

dc
(1−s)s+s2]d ensures that r(0.5, 0.5) = c.

Both the radial and the central line sweep parameteri-
zations map the linear s-constant parameter lines of a rib-
bon into straight lines in the domain space; however, this
is not necessary. Instead of a line sweep it is also possi-
ble to create a doubly curved, biquadratic mapping, as sug-
gested by Várady [28]. In this case, the (s, d) coordinates
are determined by biquadratic Bézier control points, natu-
rally placed on the sides of the domain; see Fig. 11. While
this mapping is linear on the ith-side, it is quadratic for a
general (s, d) within the domain:

(u, v) =
2∑

i=0

2∑
j=0

CijB
2
i (s)B2

i (d).

To compute (s, d), an inverse mapping from (u, v) is per-
formed by a few Newton–Raphson iterations.

Space limits us from going into the details of how to
parameterize interpolants for the direct generalization ap-
proach (see Section 3). On each boundary three vector
terms — one from the ribbon interpolant and two from
the correction patches — are added together. In order to
reproduce the cross-derivatives of the ribbon the param-
eterization must satisfy certain differential properties. As
shown in Fig. 11a, the cross-direction parametrization on
the i-th side is determined by the local control point pairs
00–10, 01–11, 02–12. On the i + 1-th side the parameteri-
zation will be defined by pairs 02–01, 12–11, 22–21. These
are identical to the control point pairs of the subsequent
(i, i+1) corner parameterization, denoted by 00–10, 01–11,
02–12 in Fig. 11b, which compensate the extra term com-
ing from the i-th side interpolant along the i + 1-th side.
In this way the biquadratic scheme automatically satisfies
the requested differential properties for the direct general-
ization approach.

6. Discussion and examples

In the previous sections we have discussed the basic ele-
ments for constructing n-sided transfinite surfaces. We con-
tinue analyzing important quality issues that are needed
for practical applications.

(i) It is an obvious and necessary condition that the
boundaries and the cross-derivatives must be “fair”. We
desire compatible twist vectors for the cross-derivatives;
however, this is not required for the “combining ribbons”
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(a) Side parameterization

(b) Corner parameterization

Fig. 11. Biquadratic parameterization

scheme, as the rational blending functions will average in-
compatible twists.

(ii) We have already expressed our view concerning the
importance of non-regular domains; see Fig. 5 shown ear-
lier.

(iii) The next issue is investigating the influence of the in-
dividual boundaries for the overall shape, which is strongly
related to the distance measures applied. Loosely speaking,
one can compare the strength of the individual ribbons near
the boundaries with the interior where the convex combi-
nation dominates. If the ribbons are “too wide”, then the
surface will adhere to them and there may be sudden cur-
vature changes in the interior. In the “too narrow” case,
the influence of the ribbons is weak and sudden curvature
changes may occur close to the boundaries. Finding a good
compromise is a delicate challenge, and it is not straight-
forward to pick the best method.

Figure 12 shows color maps that correspond to the in-
fluence of the individual blending functions on the domain.
Each border curve is colored differently and the vanishing
effect of the blends is depicted. Black lines limit the areas
where the weight of the given interpolants is more than
90%. White lines indicate locations where two distances
taken from two different sides have the same value. There

Fig. 12. Blending function distributions

are vertices inside the domain where more than two dis-
tances are identical.

The first example in Fig. 12 shows roughly equal dis-
tances from the sides of the domain, which means that the
midpoint of the surface will be a combination of the mid-
points of the ribbons by weight 1

n . In other words, the rib-
bons, even the small green one, are almost uniformly pulled
towards the center point of the surface. The second example
shows a proportional distance computation, where shorter
edges have smaller effect towards the interior. In this figure,
perpendicular distances were used to obtain this Voronoi-
like structure of white edges. The effect of the small green
edge quickly vanishes and the three longer sides on the left
side blend together and entirely dominate the small one.
The left part of the surface acts independently, regardless
of whether the green edge is inserted or removed. Clearly,
this behavior is desirable in the majority of practical appli-
cations.

(iv) The individual ribbons should map onto the domain
in a well-oriented manner; for example, we want the middle
parameter lines of each ribbon to lie somewhere around
an approximate halfway line in the domain. Unfortunately,
this is not always the case, and shearing effects can be
observed when the domain polygon has large angles at the
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Fig. 13. Radial distance function: (a) (s3, d3) and (b) (s2, s3) parameter lines, (c) halving lines

Fig. 14. Central line sweep: (a) (s3, d3) and (b) (s2, s3) parameter lines, (c) halving lines

corners. Consider the radial parameterization in Fig. 13.
The first set of constant parameter lines (si, di) relates to
the top right side, and the second set (si−1, si) to the corner
between the right and the top right sides. Finally, the third
picture set shows all the halfway lines of the individual
ribbons si = 0.5 mapped to the domain. Observe that the
halfway lines are awkwardly distributed, and accordingly
the halfway lines of the ribbons are mapped in a distorted
manner. Note that the blue halfway line coming from the
top side is strongly skewed to the right side. Ideally it should
be located somewhere in the center.

This deficiency is rectified by the central line sweep
method. Compare the constant parameter lines in Fig. 14
with the previous subfigures. By construction the halfway
lines go through the center point, and, as a result, the
ribbons will be mapped in a more balanced manner. It
will improve the shape of the surface and minimize shape
artifacts in skewed configurations.

(v) Without going into details, we note that the line
sweep technique can be applied to generate two and one-
sided patches, as well; see Figures 15 and 16. The domain
of the two-sided patch is bounded by two parabolic arcs,
and the distance parameters are computed using simple line
sweeps by a quadratic function. The ribbons are combined
by simple blending functions of type

Ki(d1, d2) =
d2

j

d2
1 + d2

2

, i, j ∈ {1, 2}, i 6= j.

Fig. 15. Two-sided patch

Fig. 16. One-sided patch
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Fig. 17. Mean curvature map of a model using regular (top) and non-regular (bottom) domain polygons

The one-sided patch is also a combination of two entities.
Take a closed curve and an associated ribbon without local
self-intersection, and an auxiliary point with a normal vec-
tor to define an annular ribbon in the middle of the patch.
Apply the above blending functions to obtain the surface.
One-sided patches are not only of theoretical interest, but
there are practical cases where protrusions or depressions
controlled by ribbons need to be created.

To conclude our discussion, it would be hard to pick
a single best method from the three proposed trans-
finite schemes, i.e., generalized Coons patches, corner
interpolant-based patches and side interpolant-based
patches. In the majority of ordinary cases it is hard to vi-
sually distinguish between them (see Fig. 4), and shape ar-
tifacts can only be observed when the boundary segments
have uneven lengths and are highly curved.

This may disappoint some of our readers, but there are
extraordinary configurations where corner-based patches
produce better curvature distribution, while in other cases
side-based patches are better. Generalized Coons patches
— in some sense — combine the previous two approaches,
and thus they merge the good and bad shape features. At
the same time their parameterization is more demanding
and the evaluation of the patch takes somewhat longer.

Nevertheless, our experience shows that by using non-
regular domains and the central line sweep parameteriza-
tion it is possible to significantly improve the surface qual-
ity and avoid shape artifacts in extraordinary cases. A six-
sided test example to compare regular and non-regular do-
mains is shown in Fig. 17; the mean curvature map shows
the differences in the interior and at the corners.

Another simple test object is shown in Fig. 18 using cen-
tral line sweeps. The given 3D curve network defines two
three-sided patches, one five-sided patch and one six-sided
patch. As can be seen, the configuration includes smooth

and sharp edges. The boundary ribbons are automatically
generated based on the curve network and the patches by
means of these ribbons. For smooth edges, the ribbons are
G1 compatible; thus the adjacent patches are also G1. The
ribbons have an extra degree of freedom in magnitude,
which can be useful for users to adjust the fullness of these
patches.

7. Conclusion, future work

Different schemes to create n-sided transfinite surfaces
have been investigated. After generalizing Coons’ classical
formulation, various extensions to enhance n-sided patch
constructions were derived by which more natural shapes
emerge, especially when the boundaries of the patch have
uneven lengths, or are strongly curved.

There are many opportunities for future research. Intro-
ducing non-convex domains or domains with curved bound-
aries can reduce the number of artificial subdivisions and
enhance the surface quality. Providing additional shape
control for the interior of the patches is a challenging issue.
The automatic generation of natural and compatible cross-
derivative functions based on a general free-form curve net-
work withG1 andG2 continuity would be a disruptive tech-
nological advance. Finally, it is an important open area to
develop fairing techniques for ribbon-based transfinite sur-
faces.
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