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Let S denote an operator on a surface such that S(w) is the (negated)
derivative of the unit normal by w, i.e., for a fixed point p of the surface x(u, v),

S(w) = −∇w G,

where G is the Gauss map of the surface, and w is a vector in the tangent plane.
This is the shape operator, or Weingarten map—a symmetric, linear operator,
expressible by a 2 × 2 matrix (which is also symmetric when the basis vectors
are perpendicular). Note that S is independent of the parameterization of x as
long as the basis it is expressed in is parameterization-independent.

This matrix has very nice properties:

k(w) = 〈S(w),w〉 (normal curvature)

K = |S|, (Gaussian curvature)

H = tr(S)/2, (mean curvature)

and also the principal curvatures κ1, κ2 are the eigenvalues of S, and the princi-
pal directions e1, e2 are the corresponding eigenvectors (expressed in the basis
of the matrix).

If we write the matrix of S in the basis e1, e2, then the above properties
become obvious:

S =

(
κ1 0
0 κ2

)
. (1)

But this offers little help when we do not know these values.
Luckily S is easily expressible in the basis of the derivatives of x:

S = I−1II, (2)

where I and II are the first and second fundamental forms:

I =

(
E F
F G

)
, II =

(
L M
M N

)
,

E = 〈xu,xu〉, F = 〈xu,xv〉, G = 〈xv,xv〉,
L = 〈n,xuu〉, M = 〈n,xuv〉, N = 〈n,xvv〉,

n =
xu × xv

‖xu × xv‖
.

The drawback is that now the matrix of S is not independent of the parameter-
ization.
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Take Eq. (1) and add the unit normal n as a third basis vector, i.e., using
the basis (e1, e2, n), bringing it into 3D space:

W =

κ1 0 0
0 κ2 0
0 0 0

 .

This is the embedded Weingarten map, sometimes also called the curvature
tensor (but this term is abused). All the properties still stand, except for the
Gaussian curvature, which can be expressed as

K =
tr(W)2 − tr(W2)

2
,

and that there is an extra 0 eigenvalue; normal curvatures are computed based
on the projection of the given vector into the tangent plane.

Now we can also use the axes of 3D space as a basis—which is also indepen-
dent of parameterization—and write the matrix as

W = (J+)T · II · J+, (3)

where J+ is the left pseudoinverse of the Jacobian:

J+ = (JTJ)−1JT = I−1JT = (J · I−1)T.

This formulation also has the advantage that its eigenvectors give the principal
directions directly expressed in 3D coordinates. Note that while this matrix is
exactly the same, independently of the parameterization, in exchange it does
depend on the coordinates, so e.g. a rotation in 3D changes the elements of the
matrix.

Implicit surfaces

For an implicitly defined surface f(x, y, z) = 0 take two arbitrary perpendicular
vectors (u,v) in the tangent plane, and let

fuu = uTHu, fuv = uTHv, fvv = vTHv,

where H is the Hessian of f . If we denote the norm of the gradient with
fn = ‖∇f‖, the shape operator can be expressed in (u,v) as

S =
1

fn

(
fuu fuv
fuv fvv

)
. (4)

Solving the characteristic equation (S − I2κi)ei = 0 with i ∈ {1, 2} gives

ei = ufuv + v(κifn − fuu) or ei = vfuv + u(κifn − fvv), 1

so we can compute the principal directions without eigendecomposition, since
κi can be derived from

κi = H ±
√
H2 −K.

1Care should be taken to choose the formula that does not result in a null vector.

2



The embedded Weingarten map can be computed as

W =
1

‖∇f‖
·T ·H ·T, (5)

where T = I3 − nnT is the orthogonal projector onto the tangent plane, with
n = ∇f/‖∇f‖ being the unit normal to the surface. Note that when ‖∇f‖ = 1
(i.e., when f is a signed distance function), the embedded Weingarten map is
equal to the Hessian.

The formulas for the Gaussian and mean curvatures can be expressed suc-
cintly as below:

K =
∇fT · adj(H) · ∇f

‖∇f‖4
, H =

‖∇f‖2 · tr(H)−∇fT ·H · ∇f
2‖∇f‖3

.

Finally, a note on the sign of curvature values. They are relative to the
orientation of the normal vector; conventionally they are defined such that in
the implicit case (Eqs. 4 and 5) they are positive when the surface curves away
from the normal direction, while in the parametric case (Eqs. 2 and 3) the
resulting curvatures have the opposite sign.
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