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Abstract
Some of the earliest multi-sided surface formulations depend on a parameterization defined implicitly by con-
straints. This presents a difficulty in visualizing the patches, as the parametric domain is not trivial to triangulate.
We propose a general method that can be used with any number of sides.

1. Introduction

In recent years, n-sided surface representations have re-
ceived renewed attention.9, 1 These formulations can de-
scribe non-four-sided free-form surfaces without the inaccu-
racies of the usual trimming approach. An early example of
such patches was proposed by Sabin,5 where 2n+ 1 control
points were used to define three- and five-sided surfaces that
could connect to quadratic four-sided patches with G1 conti-
nuity. The same idea was extended later to six-sided surfaces
and cubic boundaries,3 and then to a general degree.10

These surfacing methods depend on n scalar parameters
defined implicitly by constraints, representing a kind of dis-
tance from the boundaries. Consequently, the patch equation
is a mapping from Rn to R3, and to visualize the surface, we
first need a tessellation of the n-dimensional parameter val-
ues. It is not evident how to do this, and this paper explores
different options.

2. Preliminaries

Parameters u = {u j}n
1 ∈ [0,1]n form a 2-dimensional surface

in Rn space. The side of the domain where ui = 0 is mapped
to the ith boundary of the patch. At these points, the follow-
ing constraints apply:

ui−1 +ui+1 = 1, (1)

u j = 1, j ̸= i−1, i, i+1 (2)

∑
j

u′j = cnui−1ui+1, (3)

ui+1u′i−1 = ui−1u′i+1, when n > 3 (4)

where cn is a constant depending only on the number of
sides, and derivatives are with respect to ui. The patch equa-
tion using these parameters can be found in the Appendix.

3. Tessellation

In the following we will review the parameterizations of
three-, five- and six-sided patches, and propose tessellation
algorithms of increasing complexity to handle the arising
difficulties.

3.1. Three-sided patches

The three-sided case is the simplest. Using the normalization
equation5

u1 +u2 +u3 −2u1u2u3 = 1, (5)

we can choose c3 = 2, u′i−1 = −u2
i−1 and u′i+1 = −u2

i+1 to
satisfy Eqs. (1)–(3). By Eq. (2) we also know that corners
of the domain have parameters (1,0,0), (0,1,0), (0,0,1) –
generally sequences of 1s with two consecutive 0s at the in-
dices associated with the two boundaries at the corner. We
can create a linear triangulation connecting these three ver-
tices, see Fig. 1a.

Now we can take two coordinates, e.g. u1 and u2, and ex-
press the third by them using Eq. (5):

û3 =
1−u1 −u2
1−2u1u2

. (6)

The (u1,u2, û3) points are on the domain surface, see Fig-
ure 1b. The difference from the linear (barycentric) param-
eters can be seen clearly on Fig. 2, where the domain is de-
picted from the side. Note that the triangulation will not be
symmetric, since we arbitrarily chose û3 to express from the
other two, but this is not important at sufficiently high reso-
lutions.
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(a) Linear tessellation

(b) Constrained parameters

Figure 1: Tessellation of a triangular domain.

Figure 2: Difference between Figs. 1a and 1b.

Figure 3: Tessellation of a 5-sided polygon.

3.2. Five- and six-sided patches

For five-sided patches, we have the normalization equations5

u j = 1−u j+2u j+3, j = 1 . . .5 (7)

using cyclic indexing. At first sight, this defines 5 equations
for the 5 parameters, but actually only 3 of the equations are
independent, so we still get a two-dimensional surface in R5.
Setting c5 = 1, u′i−1 = u2

i−1ui+1 and u′i+1 = u2
i+1ui−1, it is

easy to see that Eqs. (1)–(4) hold.

An n-sided polygon can be tessellated by first dividing it
into n triangles, see Fig. 3. For this, we need a center po-
sition. It is natural to require that at the middle of the sur-
face all parameters should be equal. Simple algebra shows
that (ϕ,ϕ,ϕ,ϕ,ϕ) is actually on the domain surface, where
ϕ = (

√
5−1)/2 is the golden ratio.

We can create a linear triangulation of each sub-triangle,
as in the previous section. Choosing u1 and u2 as base, the
rest can be computed as

û3 =
1−u1

1−u1u2
, û4 = 1−u1u2, û5 =

1−u2
1−u1u2

, (8)

but then the sub-triangle associated with the u4 = 0 boundary
will be degenerate, as on that side u1 = u2 = 1.

It is better to “project” the linear triangulation onto the
domain surface by minimizing the normalization energy

E5(u) =
5

∑
j=1

(u j +u j+2u j+3 −1)2, (9)

which is just the sum of squared normalization errors based
on Eq. (7). This can be minimized using a simple derivative-
free optimization algorithm, such as Powell’s method.4 Fig-
ure 4 shows constant parameter lines before and after the
projection. While these show various breaks, remember
that this represents only one coordinate of a continuous 5-
dimensional surface.

Instead of starting from a linear approximation, we can
also make use of generalized barycentric coordinates.2 First
we tessellate a regular n-sided polygon (as in Fig. 3), then
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(a) Linear approximation

(b) After projection

Figure 4: Parameter lines associated with the bottom side.

map the vertices to (e.g.) Wachspress coordinates w =
{w j}n

1. We can use the distance parameter8 ui = 1−wi−1 −
wi as our first approximation, since this also satisfies Eqs.
(1)–(2). Finally the vertices are projected onto the domain
as above, so that Eqs. (3)–(4) will also hold. Figure 5 shows
constant parameter lines for this method. Note that the pa-
rameters in Figures 4 and 5 define the same surface.

Generalized baryentric coordinates can also be used with
the direct method of Eq. (8). The u4 = 0 side will still be
degenerate (we can use û4 = u4 there) but other parts of the
sub-triangle behave normally.

In the case of six-sided patches, there is no rational for-
mula for the parameters.6 The normalization equations (only
four of which are independent) are:7

u2
i+1(1−ui−1ui)(1−2ui−1ui)+

ui+1(2ui−1 −3u2
i−1ui +ui−1u2

i )+u2
i−1 = 1. (10)

(a) Wachspress-based approximation

(b) After projection

Figure 5: Projection by generalized barycentric coordinates.

Setting c6 = 1 with

u′i−2 =
1
2

ui−1ui+1 −ui+1, (11)

u′i−1 =
3
2

u2
i−1ui+1, (12)

u′i+1 =
3
2

ui−1u2
i+1, (13)

u′i+2 =
1
2

ui−1ui+1 −ui−1, (14)

u′i+3 =−1
2

ui−1ui+1, (15)

all the requirements are satisfied. Since the direct method
would involve solving a non-linear equation, it is simpler to
use projection here, as well. The center point in this case is
(ψ,ψ,ψ,ψ,ψ,ψ) with ψ = 1√

2
.

4. Results

Figure 6 shows a 5-sided patch triangulated with the projec-
tion method, starting from both the linear and Wachspress-
based approximations, with 10 triangles on each boundary.
Generalized Bézier patches9 share the same control struc-
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(a) Projection from linear approximation

(b) Projection from Wachspress approximation

Figure 6: Triangulated surfaces.

ture, see Fig. 7. A comparison is shown on Fig. 8, with a
linear-based dense triangulation (50 triangles per boundary).
The patches are generated from the same control points. The
isophote lines are very similar, and match at the boundaries
(as required).

Conclusion

We have shown different methods for the tessellation of
Zheng–Ball patches. Of these, the only one that scales to
arbitrary number of sides is the projection method. As fu-
ture work, gradient descent could be used instead of Pow-
ell’s method, which would result in increased symmetry. Pa-
rameterizations for more sides should also be investigated,
probably using biharmonic surfaces.
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Appendix A: The Zheng–Ball patch equation

All control points are given indices based on their position
in the control structure. An index λ = {λ j}n

1 is composed
of n natural numbers, with λ j signifying how far removed
is the control point from the ith side. For example, a control
point on side i has λi = 0; the central control point in Fig. 7a
has the index (2,2,2,2,2,2). Generally, in a patch of n > 3

(a) Even degrees

(b) Odd degrees

Figure 7: Zheng–Ball / Generalized Bézier control net.

sides with degree-d boundaries, when the (i − 1)st and ith

sides are closest to a control point, the remaining indices are
computed as

λi−2 = d −λi, λi+1 = d −λi−1, λ j = d −min(λi−1,λi),

for j /∈ {i−2, i−1, i, i+1}.

The patch is evaluated at parameter u as

S(u) = ∑
λ

PλBλ(u),

where Pλ denotes the control points, and Bλ(u) is a suitable
blending function.

For control points not on the boundary (i.e., ∀ j : λ j > 0)
we define the following blend:

B∗
λ(u) =

(
d

λi−1

)(
d
λi

)
n

∏
j=1

uλ j
j ,

where λi−1 and λi are the smallest elements in λ. For control
points on the ith boundary, we have λi−1 = k, λi = 0, λi+1 =
d − k, and all other values in λ are 1. In this case, the blend
is defined as

B∗
λ(u) =

(
d
k

)
uk

i−1ud−k
i+1

n

∏
j=1

j ̸=i−1,i,i+1

ud
j

(
1−dcn

n

∏
j=1

u j

)
.
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(a) 5-sided ZB patch (b) 5-sided GB patch

(c) 6-sided ZB patch (d) 6-sided GB patch

Figure 8: Comparison of Zheng–Ball (ZB) and Generalized Bézier (GB) patches with the same control points.

This latter equation is a bit different for triangular patches:

B∗
λ(u) =

(
d
k

)
uk

i−1ud−k
i+1 (1−ui fλ(u)) ,

where

fλ(u) =

{
d − k+(2k−d)ui+1 when d − k ≤ k,
k+(d −2k)ui−1 when d − k > k.

Unfortunately B∗
Σ(u) = ∑λ B∗

λ(u) does not equal to 1, which
would be needed for the surface to be an affine combination
of the control points, so we distribute the weight deficiency
(1−B∗

Σ(u)) between the blending functions associated with
control points not on the boundary:

Bλ(u) =

{
B∗
λ(u) when ∃ j : λ j = 0,

B∗
λ(u)+

1−B∗
Σ
(u)

Tn,d
otherwise,

where

Tn,d =

{ n(d−2)d
4 +1 when d is even,

n(d−1)2

4 when d is odd

is the number of control points not on the boundary.
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